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ABSTRACT
In this study, we used recordings of players’ facial expressions that
are captured during competitive Hearthstone games to analyse
the correlation between in-game player affective responses and
subjective post-game self-reports. With this, we aimed to examine
whether eye gaze, head pose and emotions gathered as objective
data from face recordings would be associated with subjective expe-
riences of players which were collected in the form of a post-game
survey. Data was collected during a live offline Hearthstone compe-
tition, which involved a total of 17 players and 31 matches played.
Correlation analyses between in-game and post-game variables
show that players’ facial expressions and eye gaze measurements
are associated with both players’ attention to the opponent and
their mood influenced by the opponent. In future research, these
results may be used to implement predictive player models.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and
models.
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1 INTRODUCTION
Competitive video gaming, also known as Esports, is a field of
constantly growing industrial and scientific interest. In recent years,
scientific research has revolved around various aspects of Esports,
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from comparing them to traditional sports [16] to implementing
multi-agent systems able to beat the world champion team of Dota
2 [4]. Regarding player affect in particular, studies have discussed
player motivation [14], psychology [3], and physiology [5, 21].

This study presents an approach towards player affect analysis
through facial expressions, during competitive games of Hearth-
stone. Hearthstone is one of themost popular one-versus-one digital
Collectible Card Games, played as an Esport since 2014. Much like
poker, Hearthstone is played in a partially observable environment,
where players can see their own cards and the cards on the table
but have little information on their opponent’s hand. Even though
Hearthstone is mostly played online, disabling physical interac-
tions between players, most major Hearthstone competitions are
held offline with all players physically present in a venue. In this
context, analysing a player’s facial expressions may yield infor-
mation not only on their overall affective state, but also on their
in-game strategy, given the current state of the game board. How-
ever, when a player’s facial expressions are analysed, to be able to
better make sense of the data, there is a need to know what these
expressions correspond to in terms of subjective player experiences.
This purpose motivated us to investigate how we can examine eye
gazes, head poses and emotions gathered from facial expressions in
terms of players’ subjective experiences. Our goal was to uncover
whether these objective measures are related to and translated into
players’ perceptions of their involvement levels, moods and their
relationships with their opponent. Ultimately, our aim is to use this
dataset to implement predictive models of player affect based on
facial expression analysis.

We ran a live offline Hearthstone competition, where 17 players
competed for the top three prized spots. During the matches, we
recorded each player’s face along with that player’s perspective of
the game board. In addition, we employed the Game Experience
Questionnaire (GEQ) [15] to retrieve post-game subjective mea-
surements of players’ experiences. In the present paper, we present
the preliminary results of a correlation analysis between players’
facial expression metrics and their subjective reports.

2 RELATEDWORK
Human-Computer Interaction (HCI) and affective computing [23]
in particular, are fields of increasing popularity in video game re-
search. Modern sensor technology enables the unobtrusive extrac-
tion and analysis of player affective responses, which can be used
for player modelling [29], implementation of adaptive games [6]
and procedural content generation [30]. Facial expression analysis
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Figure 1: Snapshot of a game in the 2016 Hearthstone world
championship[20]. Players are seated facing each other, al-
lowing eye contact.

is a non-invasive affective input channel, as it can be achieved with
inexpensive commercial hardware and open-source software such
as OpenFace [2]. Facial expression analysis and video games have
been combined in multiple studies discussing various topics, such
as affective gaming [22, 27], game personalisation [7], player af-
fect evaluation [24, 28] and alternative gameplay mechanisms [25].
Recently, Doyran et al. [9] published a rich dataset that enables
multi-modal, multi-player affect and interaction analysis through
capturing the facial expressions of board game players.

When card games are concerned, digital or tangible, players of-
ten seek to extract hidden information from their opponents by
analysing social signals such as speech, body motion and facial
expressions [17]. Slepian et al. [26] discuss that poker players’ mo-
tor actions oftentimes betray their intentions, possibly emitting
unintended signals to opponent players about their hand quality.
The same principle can apply to a digital card game like Heartstone;
offline Hearthstone competitions often allow eye contact between
players, despite it being a digital game (see Figure 1). By analysing
player facial expressions during competitive Hearthstone games,
we may not only assess their affective state, but also extract infor-
mation on their in-game strategy. Although the latter is outside
the scope of this paper, it is one of the future goals of this work in
progress.

Affective computing techniques have been directly applied to
Esports, mainly for player affective state monitoring. Wearable sen-
sors have been employed to collect affective data from professional
Counter-Strike players [19] and semi-professional League of Leg-
ends players [5]. In this study, we look for correlations between
player social signals (through facial expressions) and subjective re-
ports of affect. To our knowledge, only a limited number of studies
discuss player facial expressions during multi-player, competitive
video games [1, 10].

3 METHOD AND DATA COLLECTION
A total of 17 players formed a tournament bracket, resulting in 31
matches played. One match was excluded from the dataset because
of webcam recording failure. In total, 156 game recordings were
collected. Applicants were all male, with an average age of 22.7
years (𝑠𝑑 = 3.6). Before their first match, all participating players

Figure 2: Overview of the methods employed in the present
paper.

signed an informed consent form agreeing to the recording of their
facial reactions throughout the game competition.

The competition was held in Tilburg University’s Game Lab.
In the lab, five pairs of high-end gaming desktop computers were
placed in two rows facing each other. For every match, the opposing
players were positioned in one of the computer pairs. To enable eye
contact between opponents, the computer’s monitors were set to
minimum height. Webcams were mounted on top of each monitor,
recording participants’ faces during the matches.

To strengthen the competitive nature of the tournament, prizes
were added for the players who finished in the top three positions.
Prizes included peripheral gaming hardware and digital gift cards.
We believe that through tangible prizes, players’ motivation to
win is increased, resulting in a stronger sense of satisfaction when
victorious, and a stronger sense of disappointment or frustration
when losing. We expect these affective responses to be expressed
both through players’ facial expressions during the games and
through their subjective post-match reports. An overview of the
data collection and data analysis methods used in this paper is
provided in Figure 2.

Regarding facial expression analysis, webcam recordings were
processed through the OpenFace [2] facial expression analysis
toolkit. OpenFace provides per-frame estimations of presence and
intensity for several facial Action Units (AU), as described in the
Facial Action Coding System (FACS) [13]. In particular, OpenFace
can detect AUs 1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26,
28, and 45. To maximise the robustness of our collected dataset,
we discarded all video frames where OpenFace’s confidence of AU
estimation was below 98%. AU intensity estimations were trans-
lated into one of the six basic emotions [12] (happines, surprise,
fear, sadness, disgust and anger) intensity estimations following
Du et al. [11]. We calculated an average value of intensity for each
facial expression of emotion, per player, per match played. Lastly,
we calculated the root-mean square error of successive differences
(RMSSD) for head pose and eye gaze measurements, per player,
per game. The latter features serve as a descriptor of overall player
head and eye movement during gameplay.

Regarding the post-match questionnaires, we employed GEQ’s
in-game and social presence modules. After eachmatch participants
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Table 1: List of variables extracted from post-match ques-
tionnaires and facial expression analysis data.

Post-match report (GEQ)

Match score Luck defined outcome
Negative affect Positive affect
Competence Flow
Tension Challenge

Behavioural involvement Psychological involvement
Influenced opponent’s mood Influenced by opponent’s mood
Attracted opponent’s attention Paid attention to opponent

Facial Expression Analysis (OpenFace)

RMSSD eye gaze RMSSD head pose
Average intensity happy Average intensity angry
Average intensity sad Average intensity disgusted

Average intensity fearful Average intensity surprised

submitted self reports, scoring their in-game positive/negative af-
fect, competence, challenge, flow, tension, behavioural and psycho-
logical involvement. Additionally, a Hearthstone-related question
was added to the questionnaire: “To what extent does the player
feel that luck defined the outcome of the match?” Since “luck” (the
game’s built-in randomness) can be a determining factor in Hearth-
stone, we expect perceived luck to be associated to increased levels
of player frustration or satisfaction. Lastly, before participating in
the tournament, players signed an informed consent form, along
with a report on their subjective prior experience level in Hearth-
stone (1 – not at all to 5 – extremely experienced), and a report on
weekly amount of hours spent on Hearthstone. The list of variables
extracted is presented in Table 1.

4 RESULTS
We ran zero-order correlation tests for each variable extracted
through facial expression analysis and post-game reporting. Each
GEQ related variable is derived from combined questionnaire items
according to Ijsselsteijn et al. [15]. To emphasise focus on inter-
actions between opponents, we also ran correlation analyses on
four specific GEQ items, namely “Influenced (by) opponent’s mood”
and “Attracted opponent’s attention/Paid attention to opponent”.
These four items also participate in the calculation of psychologi-
cal & behavioural involvement variables. Statistically significant
correlations found are listed in Table 2. Our aim was to explore
correlations between subjective player self-reports and objective
facial expression measurements; for that reason, we chose to focus
on inter-modality correlations.

In Table 2 we observe several moderate inter-modal correlations.
More specifically, player eye gaze seems to have a positive corre-
lation to players’ psychological involvement, which includes their
perception of influence on the opponent’s mood. Similarly, head
pose shows moderate correlation to psychological involvement, in-
fluencing and paying attention to the opponent. No correlation was
found between player facial expression analysis variables and the
“luck” variable. As far as facial expressions of emotion estimations
are concerned, higher happiness scores are moderately correlated
to psychological and behavioral involvement, increased attention

between both opponents and high influence on each other’s mood.
Similarly, higher estimations of fearful facial expressions are mod-
erately correlated to psychological involvement, mostly deriving
from players being influenced by their opponents. Lastly, we ob-
serve that high scores of anger have a mild positive correlation to
influence on the opponent’s mood.

Table 2: Results of zero-order correlation tests. Only statis-
tically significant correlations are listed. Correlation coef-
ficient provided in parentheses, single asterisk (*) indicates
𝑝 <= 0.05 and double asterisk (**) and bold indicates 𝑝 < 0.01.

Tested variable Significantly correlated variables

RMSSD eye gaze Psychological involvement (.33∗∗)
Influenced opponent mood (.34∗∗)

RMSSD head pose

Psychological involvement (.31∗)
Influenced opponent mood (.32∗)
Paid attention to opponent (.29∗)

Average intensity happy

Psychological involvement (.40∗∗)
Behavioural involvement (.42∗∗)

Challenge (−.30∗)
Paid attention to opponent (.45∗∗)
Attracted opponent’s attention (.27∗)
Influenced opponent’s mood (.27∗)

Influenced by opponent’s mood (.44∗∗)

Average intensity fearful

Psychological involvement (.40∗∗)
Behavioural involvement (.32∗)

Challenge (−.35∗∗)
Negative affect (.30∗)

Influenced by opponent’s mood (.52∗∗)
Paid attention to opponent (.32∗)

Average intensity angry Influenced by opponent’s mood (.28∗)

Average intensity surprised Challenge (−.26∗)

Average intensity disgusted Tension (.28∗)
Negative affect (.33∗∗)

5 DISCUSSION
The correlation analysis exposed some interesting findings. First
and foremost, a moderate correlation between players’ eye gaze
and influence on opponent mood seems to support that players
had eye contact during the games. Although this correlation yields
little information as to how the opponents’ mood was affected, or
whether eye contact was frequent, intimidating or just observatory,
this is a result worthy of further investigation. We believe that
annotations of eye contact between players, along with in-game
metrics such as player hand quality, in-game aggression/risk taking
and overall playstyle, may grant us further insight into this rela-
tionship. Ultimately, our aim is to be able to model the opponent’s
playstyle by analysing their facial expressions.

Furthermore, we observe how certain facial expressions of emo-
tion seem to be significantly correlated to paying attention to and
receiving attention from the opponent. In particular, an increase
in happiness shows positive correlation to paying attention to the
opponent, while opponent influence seems to be correlated to both
happy, fearful and angry facial expressions. We suspect that inter-
action between opponents may cause a “transfer” of emotion from
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one player to another. Meaning that in a one versus one context, an
in-game event that brings happiness to one player, might make their
opponent feel angry or frustrated. Although calculating an average
estimation of emotion over the entire course of a match means a lot
of information is lost, we believe that interactions between players
definitely have an impact on their mood. Being able to recognise the
opponents internal affective state, may be a rich source of in-game
information that players do not have direct access to.

Overall, the main unique contribution of this study is that it
shows that we expect that players’ subjective experiences can be
derived from conducting eye gaze and facial expression analyses.
Present study also hints that eye gazes and emotions may have
an influence on the opponent’s subjective experiences. However,
dyadic analyses would be needed in order to more definitively state
that players can directly affect their opponents with their gazes
and facial expressions.

As future work, we believe that two investigations are necessary.
First, in-game data should be analysed to enable the implementation
of player models with respect to their in-game playstyle. Without
any information about the actual gameplay (apart from the final
score), few conclusions can be reached regarding the relationship
between player affective state, opponent interaction and playstyle.
Second, more in-depth facial expression analysis is currently being
conducted. We believe that defining and extracting a wide list of
spatio-temporal facial expression features is crucial to the continua-
tion of this study. One example may be the detection and analysis of
facial micro-movements [8] during gameplay. Such signals enable a
more fine-grained study of player affect, associated with opponent
interactions and in-game events. Lastly, we acknowledge that the
male dominance in our dataset may harm the generalisability of
the obtained results. However, it has been indicated that males
comprise the vast majority of Esports players [18].

6 CONCLUSION
In this paper, we present a work in progress regarding player facial
expression analysis during competitive Hearthstone games. We
have collected a dataset, consisting of 17 players who participated in
a total of 31 matches during an offline live Hearthstone competition.
During gameplay, we extracted and analysed affective signals from
facial recordings, while we employed the GEQ to extract post-match
subjective scores of experience. The present study focuses not only
on correlation between in-game and post-game player affect, but
also touches upon the relationship between facial expressions and
interactions between opponent players. Results show that there is
a moderate correlation between player eye gaze measurements and
opponent influence and attention, while moderate correlation was
also found between the latter and facial expressions of happiness
and fear. These findings lead us to the conclusion that, in the context
of card games, eye contact between opponents is a social signal that
not only carries affective information from one player to another,
but may also identify players’ in-game intentions. In addition, it
was shown that the cumulative facial expression calculations can
give out information about the overall subjective experiences of
players. Our future studies aim towards player modelling, mainly
through facial expression analysis and in-game data.
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