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Abstract

Computer games are an increasingly popular form of entertainment. Typically, the quality of AI op-
ponents in computer games leaves a lot to be desired, which poses many attractive challenges for AI
researchers. In this respect,Turn-based Strategy(TBS) games are of particular interest. These games are
focussed on high-level decision making, rather than low-level behavioural actions. Moreover, they allow
the players sufficient time to consider their moves. For efficiently designing a TBS AI, in this paper we
propose a game AI architecture named ADAPTA (Allocation and Decomposition Architecture for Perform-
ing Tactical AI). It is based on task decomposition using asset allocation, and promotes the use of machine
learning techniques. In our research we concentrated on one of the subtasks for the ADAPTA architecture,
namely the Extermination module, which is responsible for combat behaviour. Our experiments show that
ADAPTA can successfully learn to outperform static opponents. It is also capable of generating AIs which
defeat a variety of static tactics simultaneously.

1 Introduction

The present research is concerned with artificial intelligence (AI) for turn-based strategy (TBS) games. The
AI for TBS games offers many challenges, such as resource management, planning, and decision making
under uncertainty, which a computer player must be able to master in order to provide competitive play.
Our goal is to create an effective turn-based strategy computer player. To accomplish this, we employ
learning techniques to generate the computer player’s behaviour automatically. For this research we are
most interested in the ’4X’ subgenre of TBS games. 4X stands for the primary goals of this type of game,
namely Exploration, Expansion, Exploitation, and Extermination.

As TBS games are in many ways related to real-time strategy (RTS) games, the research challenges of
these domains are rather similar. Buro and Furtak [2] define seven research challenges for RTS games, six of
which are also relevant to the TBS domain. These are (1) Adversarial planning, (2) Decision making under
uncertainty, (3) Spatial reasoning, (4) Resource management, (5) Collaboration, and (6) Adaptivity. While
these six research challenges are similar for both genres, TBS offers more depth in some of them, such as
collaboration and resource management. Comparing both genres, one can observe that, usually, RTS games
rely more on fast, exciting action, while TBS games rely more on strategic thinking and careful deliberation.
As far as research into these domains is concerned, this means that RTS game research is more dependent
on the development of time-efficient algorithms, while TBS games require more intelligent AI techniques.

The outline of this paper is as follows. In Section 2 we provide a definition of the TBS game used for
this research. Section 3 explains the AI architecture designed for this game. In Section 4 we describe how
spatial reasoning is used in our AI, followed by an overview of the learning algorithm used to generate the
behaviour of our AI in Section 5. The experimental setup is explained, and the results are discussed in
Sections 6 and 7. Section 8 provides conclusions.

2 Game Definition

For this research, we have developed our own game definition, based on Nintendo’sADVANCE WARS, which
is a relatively simple TBS game that still supports most of the major features of the genre. Each of the 4 X’s
(Exploration, Expansion, Exploitation, and Extermination) are represented in some form in the environment.
We named our versionSIMPLE WARS. Below, the rules ofSIMPLE WARS are explained.



Figure 1: A screenshot of the TBS game under research.

The game takes place on a two-dimensional, tile-based map, as shown in Figure 1. A tile is of a prede-
fined type, such asRoad, Mountain, or River. Each type has its own set of parameters. These parameters
define the characteristics of the tile, such as the number of moves that it takes for a unit to move over it, or
the defense bonus that a unit receives while standing on it. By default, movement in the game can occur
either horizontally or vertically, but not diagonally. A defense bonus lowers the amount of damage that the
unit receives in combat.

Some tiles contain a base, for example aCity, which provides a certain amount of resources to the player
that controls the base, or aFactory, which can produce one unit each turn. Each unit requires a specific
amount of resources to be built. A newly created unit is placed on the same tile as theFactorythat produced
it. This unit is unable to move in the turn it was created.

As is the case with bases and tiles, units come in several types. Each type has different values for its
parameters, which include (1) the starting amount of health points for the unit, (2) the number of moves it
can make per turn, (3) the amount of damage it can do to each type of unit, and (4) the actions the unit can
perform. Because a unit in the game actually represents a squad of units, and damaging the unit represents
destroying a part of the squad, the effectiveness of actions such asAttack(attacking another unit) is tied to
the number of health points that remains for the unit. Additionally, the effectiveness of anAttackdepends
on the types of units involved.

The three types of units in this game areInfantry, Tank, andAnti-Tankunits. Of these, only theInfantry
unit is capable of moving overMountaintiles. None of these units is able to move overSeatiles. The units
follow a rock-paper-scissors approach, which means that each of the three types is, where doing damage
to the other two unit types is concerned, stronger than one and weaker than the other (Infantry defeats
Anti-Tank, Anti-Tank defeats Tank, and Tank defeats Infantry).

At every turn, a player can build a single unit at eachFactoryunder control, and perform (1) aMoveand
(2) anAttackor other action for each unit under control. AnAttackaction can be performed without moving,
but a unit cannot move after performing this action. A tile can only contain a single unit at any time. This
implies that aFactory is unable to produce a new unit whenever another unit is located at the same tile as
this Factory. Additionally, a moving unit is able to pass through a tile occupied by a friendly unit, but not
through a tile occupied by an enemy unit.

3 The ADAPTA Architecture

In many commercial strategy games, the AI is implemented using scripts, which quickly become difficult
to balance or adapt. In order to keep the size of the AI manageable, the complex task in the script can
be decomposed into several subtasks, which operate independently of each other, and concentrate each on
performing a specific part of the complex task, without having to take any of the other subtasks into account.
Examples of possible subtasks include resource gathering and combat.

While the goals of the subtasks are independent, they all share the same environment, namely the game
world. Moreover, they need to share the finite number ofassets(resources and game objects) that are
available. By nature, a subtask only sees a part of the big picture, and is not concerned with the overall path



Figure 2: The ADAPTA Game AI architecture.

to victory. Therefore, separate modules are required to keep track of the AI’s goals, to determine which
goals (and therefore, which subtasks) have priority at a point in the game, and to allocate control over the
available assets to the different subtasks. Because these modules keep track of the overall strategy, they are
called the strategic modules. The subtasks are called tactical modules, as they are each responsible for one
type of tactics. In combination, all these modules make up the ADAPTA architecture, depicted in Figure 2.

In the ADAPTA architecture, the strategic AI acts as an arbitrator between the different tactical modules.
The Asset Allocation Module decides which tactical module gets control over which assets. This is achieved
through auctioning. Tactical modules generate bids, which consist of one or more assets that a module wants
to use, and a utility value that the module assigns to these assets (e.g., it assigns a high utility value to assets
which it considers to be very useful for achieving its goals). The Asset Allocation Module uses these bids
to find the allocation which maximises ‘social welfare.’ Bids are generated by the various tactical modules,
which are not concerned with the bids of competing modules. Therefore, the strategic layer contains a Utility
Management Module which weighs each bid’s utility value according to the tactical module that generated it
and the overall goal of the game. After the assets have been allocated, the Movement Order Module decides
in which order the actions generated by the tactical modules are executed.

A tactical module is required to perform three tasks, namely (1) Bid Generation, (2) Utility Calculation,
and (3) Action Generation.

1. A bid generator is responsible for submitting a set of bids to the Asset Allocation module. These bids
should represent the optimal (or near optimal) actions for a subset of the available assets, according
to a certain tactic. The ADAPTA architecture does not impose a specific method to generate the set of
bids. Rather, the approach is entirely up to the designer of the module.

2. A utility function calculates a numerical utility value given a certain set of assets. This utility is used
by the strategic layer to determine asset allocation. Utilities should provide an accurate measurement
of the relative effectiveness of a certain tactic, compared to other tactics generated by the same module.

3. After all tactical modules have submitted their bids and the asset allocation is performed, assets are
assigned to the tactical modules that submitted the winning bids. The modules generate game actions
for the assets assigned to them. These actions are submitted (along with the utility of the associated
bid) to the Movement Module in the strategic layer, which executes them in a certain order.

4 Spatial Reasoning

In this section we will take a closer look at the tactical layer of the ADAPTA architecture. As defined in
the previous section, a tactical layer can contain any number of tactical modules, and a module can be
responsible for any task. This chapter will focus on the creation of a single tactical module, which will serve
as an example of how tactical modules fit into the ADAPTA architecture. This example module is named
the Extermination module, as it is responsible for handling combat between units. In our environment, this
amounts to assigning Move and Attack actions to each unit under the command of an AI.

In our research, we use influence maps [5, 6], to determine the optimal tile to perform an action. This
means that the higher the influence is at a tile, the more preferable it is for a certain unit to move to this tile.
For TBS games, an influence map is typically calculated just before making a decision, so that it will, due
to the turn-based nature, always reflect the current game state.

The influence map is calculated separately for each tile, as follows:

I(x, y) =
∑
o∈O

p(w(o), δ(o, x, y)),



Figure 3: The calculation of an influence map.

whereO is the set of all objects used for this influence map,p(W,d) is a propagation functionof weight
vectorW (values for attributes of the object which are used by the propagation function; often just one
value for each object) and distanced, w(o) converts objecto into a weight vector, andδ(o, x, y) is a distance
function calculating the distance from objecto to tile (x, y). Simply put, the propagation function will
ensure that the influence of an object is higher for tiles that are close to the object, and lower further away
from the object. A graphical representation of the calculation of an influence map is shown in Figure 3. In
this case, the influence map concerns moveable unit types, and may represent a concept such as ‘offensive
power.’

The behaviour of an influence map is defined by the two aforementioned functions, (1) the distance
functionδ and (2) the propagation functionp. The distance function can be a general distance metric, such
as Euclidean or Manhattan distance, or a domain-specific function, such as the number of steps that a unit
needs to get to the target tile. The propagation function defines the influence that an object has on each
tile. It is a function of the distance between the game object and current tile. Note that, for the propagation
function, values below zero are set to zero, because the object has no influence in the corresponding tile
rather than negative influence.

Because different types of game objects have different effects on the game, the calculation of influences
should be performed differently for each type. Additionally, by summing both positive and negative influ-
ences for different types of objects in a single influence map, information may be lost. For these reasons,
multiple influence maps should be maintained for different types of objects. These influence maps can then
be analysed on their own as well as combined with others by alayering algorithm. A layering algorithm is
a function that combines the contents of a number of influence maps and combines them into a single, new
influence map. Figure 4 is an extension of Figure 3 which illustrates the process of layering two different
influence maps, namely the one from Figure 3, and one concerning stationary units, which may represent a
concept such as ‘production capacity.’.

In our research, the layering algorithm is a neural network, which uses all influence maps that were the
result of propagation functions as inputs. As output, it generates two influence maps simultaneously, one of
which indicates the preferability of moving to each tile, and the other doing the same for attacking each tile.
In this way, the task of the Extermination module is reduced to selecting the tiles with the highest influence
from all possible targets for the Move and Attack actions.

Figure 4: Layering two influence maps.



5 Adaptivity

The behaviour of an AI using the spatial reasoning approach described in the previous section depends on
the choices for the propagation functions and layering algorithm, as well as their weights. To generate
effective behaviour for such an AI, we use a learning algorithm. In order to keep the size of the search space
manageable, we limit ourselves to generating the weights, while the choices of all functions remain fixed.

The learning algorithm we used is an evolutionary algorithm (EA) [3, 7]. In our approach, candidate so-
lutions, orindividuals, are represented by adding the weight strings of each neural network together, forming
a single string of numbers. At each generation, the effectiveness (orfitness) of each of the individuals must
be determined according to a certainfitness measure. Because the individuals define the behaviour of a
game AI, their fitness can be determined by letting these AIs play the game that they are intended for. In
order to attain consistent fitness values, all individuals are made to play against the same opponent(s). An
individual’s fitness is defined as

Fi =

∑
j Rij +

∑
j Rji

2 · |Ri|,
whereRij is the numerical value resulting from a game between playersi andj, where playeri has starting
position 1 and playerj has starting position 2. The genetic operators chosen for the EA are capable of
operating on neural networks. The operators are able to change single weights, entire nodes, or complete
networks. A description of each of the operators, as well as a detailed overview of the EA used, is given by
Bergsma [1].

6 Experiment 1: Iterative Learning

For our experiments, we implemented a research environment in which the gameSIMPLE WARS can be
played between different AIs.

It is impractical for the ADAPTA AI to learn against human players. We decided to determine the ability
of the ADAPTA AI to defeat a certain tactic by letting it play against other AI implementations, such as
scripts. We implemented a simple rush tactic to serve as an initial opponent. This tactic always makes its
available units move towards the nearest enemy unit, and attacks whenever possible. In practice, for many
commercial RTS games, rush tactics are considered to be a very strong, sometimes optimal approach to win
the game [4].

Because the goal of this experiment is to train the Exterminate module, the game rules are focussed on
combat. The goal of the game is to destroy 10 enemy units. This is also the total amount of units a player
is allowed to build during the game. Because the game is played on a small map, both players are only
allowed to control 4 units at any time. Both players start off without any units, but with 4 Factories, each of
which is able to build all three unit types. Aside from the 10-unit limitation, both players are given sufficient
resources to build 10 units at the start of the game.

Our goal is to improve iteratively the performance and behaviour of the ADAPTA AI, as well as assessing
to which extent the results of the learning algorithm generalise over different opponents. Therefore, after the
ADAPTA AI has learned to convincingly defeat the initial opponent, we started a new run with the learned
AI now as the new opponent. Again, when this opponent was convincingly defeated, we replaced it with the
newly generated AI. This process was repeated until ten new AIs were generated.

Table 1 lists the final minimum, average, maximum, and opponent fitness values for each iteration. The
Rush AI is used as the opponent in the first iteration, the AI generated against the Rush AI is used as the
opponent in the second iteration, etc.

From Table 1 we conclude that, at each iteration, the learning algorithm is successful in generating a
solution which outperforms its opponent. This can be derived from the fact that the maximum fitness for
each iteration is positive. To compare the individual results, all eleven AIs (the Rush AI and the ten generated
AIs) were made to play against each other. For each of these AIs, their fitnesses against emphevery opponent
are averaged in Figure 5 (this is different from the average listed in Table 1, which is the average fitness
achieved against only its training opponent). Here, iteration number 0 represents the Rush AI.

Figure 5 shows clearly that the overall performance of the AIs does not increase with each iteration.
Even though each AI outperforms the AI from the previous iteration, the average fitnesses may go up or
down. This fact suggests that the results do not generalise well over the opponents from previous iterations.

For a better understanding of these results, we considered the types of tactics that the generated AIs use.
We found that the AIs can be divided into three categories, each of which uses simple tactics.



Iter. Minimum Average Maximum Opponent
1 -0.293 0.129 0.473 -0.129
2 -0.275 0.059 0.326 -0.059
3 -0.060 0.155 0.486 -0.155
4 -0.416 -0.027 0.286 0.027
5 -0.021 0.318 0.591 -0.318
6 -0.252 0.141 0.500 -0.141
7 -0.533 0.057 0.357 -0.057
8 -0.022 0.025 0.302 -0.025
9 -0.425 0.053 0.300 -0.053

10 -0.212 0.111 0.457 -0.111

Table 1: Final fitness values for Experiment 1.

Figure 5: Average fitnesses of all AIs.

1. The Defence tactic. This tactic keeps units close to each other at the base, and only attacks when
provoked. It is used by AIs #1 and #5.

2. The Base Offence tactic. This tactic entails rushing the enemy bases with all units, and attacking
enemy units whenever possible. It is used by AIs #2, #4, and #7.

3. The Unit Offence tactic. This tactic is similar to the Base Offence tactic, but it moves towards enemy
units instead of bases. It is used by AIs #3, #6, #8, #9, and #10.

Figure 6 shows the performances for each of these types of tactics against each of the others, as well as
against the Rush tactic. Each of the four graphs contains the average fitness values for the corresponding
tactic against each of the four tactics. From this figure we can observe the following. The Rush AI outper-
forms the Base Offence and Unit Offence tactics, but is outperformed by the Defence tactic. In turn, the
Defence tactic is outperformed by the Base and Unit Offence tactics. This implies that none of the tactics
dominates the others. It seems that, as is the case with the units, a rock-paper-scissors relationship exists at
the level of strategies.

As a side note, we add that no Fog of War (FoW) was used for these experiments. While experiments
with FoW were performed, their results were similar to the results described here. A possible explanation for
this is that, for this environment, FoW has little effect on the game. Details concerning the FoW experiments
are given by Bergsma [1].

Figure 6: Fitnesses between each type of tactic.



Figure 7: Average fitness of each non-dominated individual against the training set and the test set. The
latter is weighed according to the prevalence of each tactic in the test set.

7 Experiment 2: Multi-Objective Learning

Because each generated AI’s performance was strongest against their direct opponent, it is expected that an
AI which is learned against multiple opponents will be relatively strong against each of them. If each of
these opponents uses a different tactic, the AI must learn to outperform each of these tactics simultaneously,
which potentially results in a generalised AI.

In the second experiment we decided to generate an AI against three of the different AIs from the first
experiment, namely #0 (the Rush AI), #1 (a Defence tactic) and #3 (A Unit Offense tactic). The approach
we used for this experiment is based on the SPEA2 algorithm [8]. It uses the concept of Pareto dominance to
establish an ordering between different individuals. An individual is Pareto dominated if another individual’s
fitness values are at least equal to the first individuals fitness values, and at least one of these values is greater.
Using this concept, non-dominated individuals can objectively be considered better than their dominated
counterparts.

The SPEA2 approach differs from regular EAs in two important ways. Firstly, aside from the regular
population, an archive containing non-dominated individuals is maintained. Each new population is now
generated using the individuals from not just the population, but also from this archive. Secondly, two
factors are used to determine the scalar fitness value of individuals, namely (1) the number of individuals
which dominate this individual and (2) the location of this individual in the fitness space.

At the end of the second experiment (which we ran only once due to the time-intensive nature of the
task), the learning algorithm had generated 28 non-dominated individuals. To determine the quality of these
AIs, they were played against the test data, which consists of the previously generated AIs which were not
used as training data (AIs #2 and #4 through #10). The resulting averages of the fitness values against both
the training and the test sets are displayed in Figure 7. The test set averages are weighted according to the
prevalence of their corresponding tactic within this set.

Unsurprisingly, the results against the test set are generally lower than those against the training set.
However, in some cases the differences are exceedingly large. For example, the AI with the highest average
fitness against the training set, Non-Dominated Individual (NDI) #31, has a negative average fitness against
the test set. The fitness values for this individual imply that a single AI using a certain observed tactic, is
not necessarily representative for other AIs using the same tactic. The test results in this figure also show a
clear favourite; NDI #32 outperforms the other AIs by a wide margin.

To obtain a more accurate measure of the generated AIs’ performances, they were also made to play
each other in a tournament. Again, NDI #32 proved to be the best-performing AI.

Analysing the behaviour of NDI #32 shows an interesting tactic. It does not simply rush toward enemy
units or bases, but it is not strictly defensive either. For the first few turns, this AI does not move its units,
until any attacking enemy units move into attack range. Then, the AI sends all of its units towards these



enemy units. Because the enemy’s units move at different rates and therefore do not arrive simultaneously,
this results in a material advantage as well as the initiative of attack. This behaviour shows that the learning
algorithm is able to generate an AI which not only outperforms multiple tactics, but does so using a new,
somewhat more complicated tactic, instead of an improved version of the previously generated tactics.

8 Conclusions

The goal of this research was to generate automatically an effective TBS AI player. To accomplish this,
our approach focussed on spatial reasoning, through the use of influence mapping. In this work, we have
extended the influence mapping approach by implementing an improved layering algorithm, and by creating
a learning algorithm which generates the weights, and therefore the behaviour, of the influence maps auto-
matically. We have also shown that influence maps can be used to determine directly the behaviour of an AI
player.

Moreover, in order to decompose the complex task of creating a TBS AI player, we proposed the ADAPTA

architecture. This architecture makes it possible to concentrate AI design on a single subtask. This promotes
the possibility to implement learning AIs.

In our experiments, we chose one subtask, namely an Extermination module which is aimed at combat.
For this subtask we learned new AIs using an evolutionary algorithm. The results achieved showed that
the ADAPTA AI is able to generate tactics that defeat all single opponents. Moreover, by learning against
multiple opponents using different tactics simultaneously, an AI was created which was able to play at least
equally well and outperform most of the previously generated AIs.

For future work, we intend to explore the capabilities and limitations of the auctioning mechanism in the
strategic layer of the ADAPTA architecture, as this was not included in the present research. Furthermore, we
intend to explore whether the successes achieved with learning of the Extermination module can be repeated
for the other modules.
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