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ABSTRACT 

Artificially intelligent opponents in commercial computer 
games are almost exclusively controlled by manually-
designed scripts. With increasing game complexity, the 
scripts tend to become quite complex too. As a consequence 
they often contain “holes” that can be exploited by the human 
player. The research question addressed in this paper reads: 
How can evolutionary learning techniques be applied to 
improve the quality of opponent intelligence in commercial 
computer games? We study the off-line application of 
evolutionary learning to generate neural-network controlled 
opponents for a complex strategy game called PICOVERSE. 
The results show that the evolved opponents outperform a 
manually-scripted opponent. In addition, it is shown that 
evolved opponents are capable of identifying and exploiting 
holes in a scripted opponent. We conclude that evolutionary 
learning is potentially an effective tool to improve quality of 
opponent intelligence in commercial computer games. 

INTRODUCTION 

The aim of opponents in commercial computer games is to 
provide an entertaining playing experience rather than to 
defeat the human player at all costs. The quality of the 
opponent intelligence in games such as computer role-
playing games (CRPGs), first-person shooters (FPSs) and 
strategy games, lies primarily in their ability to exhibit 
human-like behaviour. This implies that computer-controlled 
opponents should at least meet the following four 

requirements: (1) they should not cheat, (2) they should 
exploit the possibilities offered by the environment, (3) they 
should learn from mistakes, and (4) they should avoid clearly 
ineffective behaviour. Opponents in today’s computer games, 
however, have not yet reached this level of behaviour. The 
appeal of massive online multi-player games stems partly 
from the fact that computer-controlled opponents often 
exhibit what has been called “artificial stupidity” (Schaeffer 
2001) rather than artificial intelligence. 
   In early CRPGs and most of present-day FPSs and strategy 
games an opponent’s behaviour is usually determined by a 
straightforward script such as “attack the target if it is in 
range, else move towards the target in a straight line.” 
However, more advanced games contain opponents 
controlled by large scripts comprising hundreds of complex 
rules. As any programmer knows, complex programs are 
likely to contain bugs and unanticipated features. As a 
consequence, intelligent opponents intended to pose a 
considerable challenge to a human player often suffer from 
shortcomings that are easily recognised and exploited. For 
example, in the CRPG SHADOWS OF AMN (2000; illustrated 
in figure 1) the dragons, the supposedly toughest opponents 
in the game, could be easily defeated by taking advantage of 
holes in the extensive scripts controlling their actions. 
Evidently, such artificial stupidity spoils the playing 
experience. 
   State-of-the-art artificially intelligent opponents lack the 
ability to learn from experience. Therefore, the research 
question addressed in this paper reads: How can evolutionary 
learning techniques be applied to improve the quality of 
opponent intelligence in commercial computer games? We 
discuss two main ways of applying machine learning to 
games: off-line learning and on-line learning. We introduce 
the strategy game PICOVERSE and outline the duelling task 
for which we evolve opponent intelligence off-line. We then 
describe the environment and techniques we have used for 
our initial experiments. We present the results of our 
experiments and discuss them. Finally, we draw some 
conclusions and point out future research. 

OPPONENT INTELLIGENCE LEARNING 

We distinguish two main ways of applying machine learning 
to improve the quality of opponent intelligence in 
commercial computer games: on-line learning and off-line 
learning. 

On-line Learning 

Examples of on-line application of machine learning are 
some of the opponents developed for the popular FPS 
QUAKE. The artificial player in QUAKE III (commonly called 
a “bot”) uses machine learning techniques to adapt to its 
environment and to select short-term and long-term goals 

Figure 1: A dragon in SHADOWS OF AMN. 



 

(Van Waveren and Rothkrantz 2001). John Laird has 
developed a bot that predicts player actions and uses these 
predictions to set ambushes and to avoid traps (Laird 2001). 
Of the four requirements we mentioned in the introduction 
for opponent strategies that exhibit high entertainment value, 
these bots address the first two, namely managing to avoid 
cheating and using their environment effectively. However, 
they can not learn from mistakes or generate completely new 
tactics to overcome ineffective behaviour. They mainly adapt 
to the world they find themselves in, rather than to the tactics 
of the human player. Still, these bots are a first step towards 
the creation of human-like opponents by on-line adaptation. 
   Machine learning techniques are rarely used in commercial 
computer games. Presumably, the widespread dissatisfaction 
of game developers with machine learning (Woodcock 2000) 
is caused by the bold aim of creating intelligent opponents 
using on-line learning. Machine learning techniques require 
numerous experiments, generate noisy results, and are 
computationally intensive. These characteristics make 
machine learning rather unsuitable for on-line adaptation of 
opponents in computer games. 

Off-line Learning 

In the off-line application of machine learning techniques the 
disadvantages mentioned for on-line learning do not pose an 
insurmountable problem. However, to our knowledge, 
developers of commercial games have never used machine 
learning for off-line learning. In our view the two main 
applications of off-line learning in games are: (1) to enhance 
intelligence of opponents by training them against other 
(scripted) opponents and (2) to proof opponents against 
unforeseen player tactics by detecting “holes” in the scripts 
controlling the opponents. The next three sections describe 
the experiments supporting our view on the off-line 
application of machine learning in games. 

DUELLING SPACESHIPS 

In our experiments, we apply off-line learning for optimising 
the performance of opponents in a strategy game called 
PICOVERSE. This section discusses the game and the learning 
task to be used in our experiments. Figure 2 shows three 
screenshots of the game. PICOVERSE is a relatively complex 
strategy game for the Palm (handheld) computer. Our 
intentions with the development of this game are twofold: (1) 
we use it to support and illustrate our views on the design of 
complex Palm games (Spronck and Van den Herik, 2002), 
and (2) in the present context, we use it to investigate the off-
line application of machine learning to improve opponent 
intelligence. 
   In PICOVERSE the player assumes the role of an owner of a 
small spaceship in a huge galaxy. Players act by trading 

goods between planets, going on missions and seeking 
upgrades for their spaceship. During travel, players 
encounter other ships and combat may ensue. The ships are 
equipped with laser guns to fight opponent ships. They are 
protected from destruction by their hulls. Modelling ship 
damage, the strength of the hull decreases when hit by laser 
beams. The duels in PICOVERSE are more strategically 
oriented than action oriented. While the relative attack power 
and hull strengths of the spaceships are important factors in 
deciding the outcome of a fight, even overpowered players 
have a good chance to escape unharmed if their ship is 
equipped with fast and flexible drives or specific defence 
measures. To enhance immersiveness of the game, we permit 
opponents, who have access to the same equipment as the 
player, to escape from a duel that they are bound to lose, 
rather than to continue fighting until being destroyed. This 
feature makes the opponent intelligence non-trivial, despite 
the relatively low level of complexity of the game (as 
compared to state-of-the-art PC games). 

OFF-LINE LEARNING EXPERIMENTS 

In our experiments, the performance of a neural-network 
controlled spaceship is optimised using off-line learning in a 
simplified version of PICOVERSE. For both the evolved and 
opponent ships, lasers fire automatically when their enemy is 
within a certain range and within a 180-degree arc at the 
front of the ship. If a ship bumps head-on into the other ship, 
its speed is reduced to zero. The neural controllers are 
trained using evolutionary algorithms. The fitness is 
determined by letting the evolved spaceships combat against 
scripted opponents in a duelling task. Below, we discuss the 
duelling task, the neural network controlling the spaceship 
and the evolutionary algorithm. 

The Duelling Task 

Figure 3 is an illustration of the duelling task. We refer to the 
scripted ship as “the opponent” and to the ship that is 
controlled by a neural network as “the evolved ship”. The 
scripted behaviour of the opponent is implemented as 
follows. The opponent starts by increasing its speed to 
maximum and rotating the ship’s nose towards the centre of 
the evolved ship. While the opponent ship is firing its laser, it 
attempts to match its speed to the speed of the evolved ship. 
If the hull strength of the opponent is lower than that of the 
evolved ship, the opponent ship attempts to flee by turning 
around and flying away at maximum speed. This simple yet 
effective script mimics a basic strategy often used in 
commercial computer games. 

The Neural Controller 

The neural network controlling the (to be) evolved ship has 
ten inputs. Four inputs represent characteristics of the 
evolved ship: the laser power, the laser range, the hull 
strength, and the speed. Five inputs represent characteristics 
of the opponent ship: the location (direction and distance), 
current hull strength, flying direction, and speed. The tenth 
input is a random value. The network has two outputs, 
controlling the acceleration and rotation of the evolved ship. 
The hidden nodes in the network have a sigmoid activation 

Figure 2: PICOVERSE. 



 

function. The outputs of the network are scaled to ship-
specific maximums. 
   We studied two types of neural networks, namely 
feedforward and recurrent networks. The feedforward 
networks include fully-connected networks (every neuron 
may be connected to any other neuron, as long as a 
feedforward flow through the network is guaranteed) and 
layered networks (neurons are only connected to neurons in 
the next layer). The recurrent neural networks are layered 
networks in which recurrent connections are only allowed 
between nodes within a layer. Recurrent connections function 
as a memory by propagating activation values from the 
previous cycle to the target neuron. 

The Evolutionary Algorithm 

An evolutionary system, implemented in the ELEGANCE 
simulation environment (Spronck and Kerckhoffs 1997), was 
used to determine the neural network connection weights and 
architecture. All simulations are based on the following 
settings: a population size of 200, an evolution run of 50 
generations, real-valued weight encoding, size-2 tournament 
selection, elitism, Thierens’ method of dealing with 
competing conventions (Thierens et al. 1993) and size-3 
crowding. As genetic operators we used biased weight 

mutation (Montana and Davis 1989), nodes crossover 
(Montana and Davis 1989), node existence mutation 
(Spronck and Kerckhoffs 1997), connectivity mutation 
(Spronck and Kerckhoffs 1997), and uniform crossover. In 
addition, we added randomly generated new individuals to 
prevent premature convergence. 
   The fitness is defined as the average result of fifty duels 
between the evolved ship and its opponent. Each duel lasts 
fifty time steps. Each duel in which the ships started with 
different characteristics was followed by a duel in which the 
characteristics were reversed. At time step t the fitness is 
defined as: 
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where PHt is the hull strength of the evolved ship at time t 
and OHt is the opponent hull strength at time t. The overall 
fitness for a duel is determined as the average of the fitness 
values at each time step. 
   Determining the fitness in this way has the following 
properties. If the evolved ship and its opponent both remain 
passive the fitness is equal to 0.5. If the opponent ship is 
damaged relatively more than the evolved ship, the fitness is 
larger than 0.5 and if the reverse is true (or when the evolved 
ship is destroyed) the fitness is smaller than 0.5. Therefore, 
the fitness function favours attacking if it leads to victory and 
favours fleeing otherwise. 

RESULTS 

Table 1 presents the results of the two types of networks 
tested in the experiments. Evidently, the layered feedforward 
neural networks with two layers outperforms all other 
networks in terms of average and maximum fitness value. 
The network with five nodes in each hidden layer scored 
only slightly better than the network with ten nodes in each 
layer. 
   At first glance the best fitness results achieved are not very 
impressive. A fitness of 0.5 means that the neural controller 
results are as effective as the manually-designed algorithm. A 
fitness of 0.579 (the best result obtained in the experiments) 
may be taken to indicate that the evolved opponent scores 
only slightly better than the scripted opponent. Since the 
scripted opponent employs a fairly straightforward tactic, one 
would expect the neural controller to be able to learn a far 
more successful tactic. However, a controller that remains 
passive reaches a fitness of 0.362. Given that a scripted 

Figure 3: Sequence illustrating the duelling task. The duelling
spaceships are represented by the small circles. A ship’s direction
is indicated by a line inside the circle, its speed by the length of the
line extending from the ship’s nose. The dotted arc indicates the 
laser range. The evolved ship is fixed to the centre of the screen
and directed to the right. In the sequence the evolved ship is
stationary. From left to right, top to bottom, the six pictures show
the following events. (1) Starting position. (2) The opponent moves 
towards the evolved ship and (3) bumps into it. Both ships are
firing their lasers. (4) The opponent has determined it should flee
and turns around. (5) The opponent flees and (6) escapes. 

Neural network type Exps Average Lowest Highest 
Recurrent, 1 layer, 5 hidden nodes 5 0.516 0.459 0.532 
Recurrent, 1 layer, 10 hidden nodes 5 0.523 0.497 0.541 
Recurrent, 2 layers, 5 nodes per layer 7 0.504 0.482 0.531 
Feedforward, 7 hidden nodes 5 0.472 0.382 0.527 
Feedforward, 2 layers, 5 nodes per layer 5 0.541 0.523 0.579 
Feedforward, 2 layers, 10 nodes per layer 8 0.537 0.498 0.576 
Feedforward, 3 layers, 5 nodes per layer 7 0.515 0.446 0.574 

Table 1: Experimental results. From left to right, the columns indicate the type of neural network 
tested, the number of experiments performed with the neural network, the average fitness, the
lowest fitness value and the highest fitness value. The best results are typed in boldface. 



 

opponent performs better 
than a stationary ship, a 
fitness of 0.638 is a 
theoretical upper bound to 
the maximum the neural 
controller can reach. From 
that point of view, a fitness 
of 0.579 is not bad at all. 
   From the perspective of 
playing experience, the 
fitness rating as calculated 
in our experiments is not as 
important as the objective 

result of a fight. A fight can end in victory, defeat, or a 
“draw”. For the best controller, we found that 42% of the 
encounters ended in victory for the evolved ship, 28% in 
defeat, and 30% in a draw. This means that 72% of the 
encounters ended in a situation not disadvantageous to the 
evolved ship, which achieved 50% more victories than the 
opponent ship. Clearly, the evolved ship performs 
considerably better than the opponent ship. 

DISCUSSION 

Our results show that machine learning (i.e., off-line 
learning) can be used to create intelligent opponents that 
outperform scripted ones. Analysing the behaviour of the 
best-performing spaceship, we observed that it showed 
appropriate following behaviour when it overpowered the 
opponent. In these experiments, such following behaviour 
can never be detrimental to the performance. The reason for 
this is that the opponent’s script ensures that it will only turn 
around to attack again if the hull strength of the attacker 
becomes less than its own hull strength, which does not 
happen as long as the evolved ship stays behind the 
opponent. As we expected the evolved ship avoided bumping 
against the opponent while following it. Avoiding bumping is 
appropriate behaviour because bumping reduces the evolved 
ship’s speed to zero while leaving the opponent’s speed 
unaffected, potentially allowing it to escape. However, 
contrary to our expectation the evolved ship did not avoid 
bumping by reducing its speed when approaching the 
opponent, but by swerving as much as needed to keep a 
constant relative distance to the opponent. 
   We further noticed that the evolved ship did not try to flee 
when losing a fight. The probable reason is that for a 
spaceship to flee, it must turn its back toward the enemy. The 
fleeing ship then becomes a target that does not have the 
ability to fight back (since lasers only fire from the front of 
the ship). As a result, fleeing ships are almost always 
destroyed before being able to escape. Such  attempts to 
escape seem therefore of little use. From this observation we 
conclude that a better balance between the power of the 
weapons and the versatility of the ships is required to enable 
effective escape behaviour,. 

Improving the Opponent 

A surprising form of behaviour was observed when the 
opponent ship started behind the evolved ship, as illustrated 
in figure 4. In that case, often the evolved ship attempted to 
increase the distance between the two ships, up until the 

moment a draw would occur if it would continue to increase 
the distance. At that point, the evolved ship turned around 
and either repeated the behaviour or started to attack. Figure 
5 illustrates this sequence of events.  
   An explanation for the success of the observed behaviour is 
that if the distance between the two ships is maximal, the 
evolved ship will have a maximal amount of time to turn 
around and face the opponent before it gets within the 
opponent’s laser range. Since facing the opponent is required 
to counter-attack, the observed behaviour is beneficial to the 
evolved ship’s strategy. Therefore, improving the script of 
the opponent accordingly may improve its quality 
considerably. 

Detecting Shortcomings in the Script 

By using off-line learning, we could also detect shortcomings 
in the scripted opponent. Although we did not specifically 
design our experiments for this purpose, we found a 
considerable hole in the script controlling the opponent by 
observing the behaviour of the two duelling ships.  
   The opponent bases its decision to flee on a comparison 
between the relative hull strengths (e.g., if the opponent’s 
relative hull strength is lowest, it concludes that it will most 
likely lose the fight and will attempt to escape). The 
opponent’s script does not take into account that it is its own 
turn to act when it makes this decision. If the comparative 
hull strengths are close to each other, this certainly becomes 
an important consideration. For instance, if on the initial 
approach the opponent ship came within the range of the 
lasers of the evolved ship before being able to fire its own 
lasers, it would be damaged while the evolved ship would 
still be undamaged. Regardless of its own power, this would 
cause the opponent’s initial reaction to be to flee. Since in 
most cases the opponent would still be able to fire its lasers 
once, this behaviour had little influence if the opponent 
significantly overpowered the evolved ship, because it would 
start to attack again on the next turn. However, if the 
strengths of the ships were about equal, we found the evolved 
ship to exploit this weakness of the opponent, by attempting 
to manoeuvre into a position from which it could fire the first 

Figure 5: The right panel displays a trace of the movements of the 
evolved ship up to the moment that it fires its first shot. The 
opponent is overpowered and tries to flee, but the learning ship 
follows, as shown in the left panel. In this case the opponent is not 
able to escape. 

Figure 4: Opponent is behind the
evolved ship. 



 

shot. Plugging this hole in the opponent’s script will be a 
major improvement to its behaviour. 
   It is noteworthy that in many commercial turn-based games 
we have observed holes in the opponent AI similar to the 
hole we discovered in our script. For instance, in many 
games it is a good tactic for the player to pass game turns 
until the enemy has approached to a certain distance so that 
the player can initiate the first attack. Game designers will 
seldom let computer opponents employ such a tactic because 
it could lead to a stalemate where both the player and the 
computer refuse to move, because whoever makes the first 
move is at a disadvantage. Similarities with trench warfare 
are striking. 

Generalisation to Other Games 

We have shown how machine learning can be used to 
improve opponent intelligence in PICOVERSE. Of course, it 
remains an open question whether our findings generalise to 
the far more complex commercial PC games. Even the 
detection of holes in scripted AI, which is obviously much 
simpler than developing a whole new tactic, may prove to be 
too difficult if the number of choices at each turn and the 
number of turns in an encounter are very large. However, we 
expect for most games that encounters do not last “too long” 
(to avoid boredom) and the number of choices is not “too 
large” (to avoid confusion). Even for commercial PC games 
it should therefore usually be possible to detect AI 
shortcomings by machine learning. 
   Employing machine learning to design completely new 
tactics, however, is probably severely limited in its uses. 
John Laird warns that while neural networks and 
evolutionary systems may be applied to tune parameters, they 
are “grossly inadequate when it comes to creating synthetic 
characters with complex behaviours automatically from 
scratch” (Laird 2000). For a relatively simple game as 
PICOVERSE machine learning techniques by themselves can 
be useful in designing strong tactics. The combination of 
machine learning with more structured techniques, such as a 
subsumption architecture (Brooks 1991) or a technique 
inspired by Laird’s Soar Quakebot (Laird 2001), is likely to 
lead to more reliable good results within a shorter time, and 
may therefore also be suitable for more complex 
environments. 

CONCLUSIONS AND FUTURE WORK 

By applying off-line learning in the computer strategy game 
PICOVERSE we were able to improve opponent intelligence 
and to detect shortcomings in the scripted opponent. We 
conclude that machine learning can be applied off-line to 

improve the quality of opponent intelligence in commercial 
computer games. We expect the application of off-line 
learning to detect holes in commercial computer game scripts 
to be feasible. 
   Our future research will build upon our results with 
PICOVERSE. The release version of PICOVERSE will be more 
complex than the simulation we used, and we will run similar 
experiments on the more complex opponents in that version. 
For creating new opponent tactics, we intend to explore other 
machine learning techniques in combination with, for 
instance, subsumption architectures. In the long run, we hope 
to apply our techniques to improve opponent intelligence in 
commercial computer games. 
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ELEGANCE is available from http://www.cs.unimaas.nl/p.spronck/. 
PICOVERSE is targeted for a release early 2003 and available from 

http://www.picoverse.com/. 
 


