EVOLVING IMPROVED OPPONENT INTELLIGENCE

Pieter Spronck, Ida Sprinkhuizen-Kuyper and Eric Postma
Universiteit Maastricht IKAT
P.O.Box 616
NL-6200 MD Maastricht, The Netherlands
E-mail: p.spronck@cs.unimaas.nl

KEYWORDS
Gaming, handheld computers, artificial intelligence, machine
learning, evolutionary systems, neural networks.

ABSTRACT

Artificially intelligent opponents in commercial computer
games are almost exclusively controlled by manually-
designed scripts. With increasing game complexity, the
scripts tend to become quite complex too. As a consequence
they often contain “holes” that can be exploited by the human
player. The research question addressed in this paper reads:
How can evolutionary learning techniques be applied to
improve the quality of opponent intelligence in commercial
computer games? We study the off-line application of
evolutionary learning to generate neural-network controlled
opponents for a complex strategy game called PICOVERSE.
The results show that the evolved opponents outperform a
manually-scripted opponent. In addition, it is shown that
evolved opponents are capable of identifying and exploiting
holes in a scripted opponent. We conclude that evolutionary
learning is potentially an effective tool to improve quality of
opponent intelligence in commercial computer games.

INTRODUCTION

The aim of opponents in commercial computer games is to
provide an entertaining playing experience rather than to
defeat the human player at all costs. The quality of the
opponent intelligence in games such as computer role-
playing games (CRPGs), first-person shooters (FPSs) and
strategy games, lies primarily in their ability to exhibit
human-like behaviour. This implies that computer-controlled
opponents should at least meet the following four

Figure 1: A dragon in SHADOWS OF AMN.

requirements: (1) they should not cheat, (2) they should
exploit the possibilities offered by the environment, (3) they
should learn from mistakes, and (4) they should avoid clearly
ineffective behaviour. Opponents in today’s computer games,
however, have not yet reached this level of behaviour. The
appeal of massive online multi-player games stems partly
from the fact that computer-controlled opponents often
exhibit what has been called “artificial stupidity” (Schaeffer
2001) rather than artificial intelligence.

In early CRPGs and most of present-day FPSs and strategy
games an opponent’s behaviour is usually determined by a
straightforward script such as “attack the target if it is in
range, else move towards the target in a straight line.”
However, more advanced games contain opponents
controlled by large scripts comprising hundreds of complex
rules. As any programmer knows, complex programs are
likely to contain bugs and unanticipated features. As a
consequence, intelligent opponents intended to pose a
considerable challenge to a human player often suffer from
shortcomings that are easily recognised and exploited. For
example, in the CRPG SHADOWS OF AMN (2000; illustrated
in figure 1) the dragons, the supposedly toughest opponents
in the game, could be easily defeated by taking advantage of
holes in the extensive scripts controlling their actions.
Evidently, such artificial stupidity spoils the playing
experience.

State-of-the-art artificially intelligent opponents lack the
ability to learn from experience. Therefore, the research
question addressed in this paper reads: How can evolutionary
learning techniques be applied to improve the quality of
opponent intelligence in commercial computer games? We
discuss two main ways of applying machine learning to
games: off-line learning and on-line learning. We introduce
the strategy game PICOVERSE and outline the duelling task
for which we evolve opponent intelligence off-line. We then
describe the environment and techniques we have used for
our initial experiments. We present the results of our
experiments and discuss them. Finally, we draw some
conclusions and point out future research.

OPPONENT INTELLIGENCE LEARNING

We distinguish two main ways of applying machine learning
to improve the quality of opponent intelligence in
commercial computer games: on-line learning and off-line
learning.

On-line Learning

Examples of on-line application of machine learning are
some of the opponents developed for the popular FPS
QUAKE. The artificial player in QUAKE III (commonly called
a “bot”) uses machine learning techniques to adapt to its
environment and to select short-term and long-term goals

(Van Waveren and Rothkrantz 2001). John Laird has
developed a bot that predicts player actions and uses these
predictions to set ambushes and to avoid traps (Laird 2001).
Of the four requirements we mentioned in the introduction
for opponent strategies that exhibit high entertainment value,
these bots address the first two, namely managing to avoid
cheating and using their environment effectively. However,
they can not learn from mistakes or generate completely new
tactics to overcome ineffective behaviour. They mainly adapt
to the world they find themselves in, rather than to the tactics
of the human player. Still, these bots are a first step towards
the creation of human-like opponents by on-line adaptation.

Machine learning techniques are rarely used in commercial
computer games. Presumably, the widespread dissatisfaction
of game developers with machine learning (Woodcock 2000)
is caused by the bold aim of creating intelligent opponents
using on-line learning. Machine learning techniques require
numerous experiments, generate noisy results, and are
computationally intensive. These characteristics make
machine learning rather unsuitable for on-line adaptation of
opponents in computer games.

Off-line Learning

In the off-line application of machine learning techniques the
disadvantages mentioned for on-line learning do not pose an
insurmountable problem. However, to our knowledge,
developers of commercial games have never used machine
learning for off-line learning. In our view the two main
applications of off-line learning in games are: (1) to enhance
intelligence of opponents by training them against other
(scripted) opponents and (2) to proof opponents against
unforeseen player tactics by detecting “holes” in the scripts
controlling the opponents. The next three sections describe
the experiments supporting our view on the off-line
application of machine learning in games.

DUELLING SPACESHIPS

In our experiments, we apply off-line learning for optimising
the performance of opponents in a strategy game called
PICOVERSE. This section discusses the game and the learning
task to be used in our experiments. Figure 2 shows three
screenshots of the game. PICOVERSE is a relatively complex
strategy game for the Palm (handheld) computer. Our
intentions with the development of this game are twofold: (1)
we use it to support and illustrate our views on the design of
complex Palm games (Spronck and Van den Herik, 2002),
and (2) in the present context, we use it to investigate the off-
line application of machine learning to improve opponent
intelligence.

In PICOVERSE the player assumes the role of an owner of a
small spaceship in a huge galaxy. Players act by trading

Picoverse 6]

Picoverse a6y} Picoverse D

Figure 2: PICOVERSE.

goods between planets, going on missions and seeking
upgrades for their spaceship. During travel, players
encounter other ships and combat may ensue. The ships are
equipped with laser guns to fight opponent ships. They are
protected from destruction by their hulls. Modelling ship
damage, the strength of the hull decreases when hit by laser
beams. The duels in PICOVERSE are more strategically
oriented than action oriented. While the relative attack power
and hull strengths of the spaceships are important factors in
deciding the outcome of a fight, even overpowered players
have a good chance to escape unharmed if their ship is
equipped with fast and flexible drives or specific defence
measures. To enhance immersiveness of the game, we permit
opponents, who have access to the same equipment as the
player, to escape from a duel that they are bound to lose,
rather than to continue fighting until being destroyed. This
feature makes the opponent intelligence non-trivial, despite
the relatively low level of complexity of the game (as
compared to state-of-the-art PC games).

OFF-LINE LEARNING EXPERIMENTS

In our experiments, the performance of a neural-network
controlled spaceship is optimised using off-line learning in a
simplified version of PICOVERSE. For both the evolved and
opponent ships, lasers fire automatically when their enemy is
within a certain range and within a 180-degree arc at the
front of the ship. If a ship bumps head-on into the other ship,
its speed is reduced to zero. The neural controllers are
trained using evolutionary algorithms. The fitness is
determined by letting the evolved spaceships combat against
scripted opponents in a duelling task. Below, we discuss the
duelling task, the neural network controlling the spaceship
and the evolutionary algorithm.

The Duelling Task

Figure 3 is an illustration of the duelling task. We refer to the
scripted ship as “the opponent” and to the ship that is
controlled by a neural network as “the evolved ship”. The
scripted behaviour of the opponent is implemented as
follows. The opponent starts by increasing its speed to
maximum and rotating the ship’s nose towards the centre of
the evolved ship. While the opponent ship is firing its laser, it
attempts to match its speed to the speed of the evolved ship.
If the hull strength of the opponent is lower than that of the
evolved ship, the opponent ship attempts to flee by turning
around and flying away at maximum speed. This simple yet
effective script mimics a basic strategy often used in
commercial computer games.

The Neural Controller

The neural network controlling the (to be) evolved ship has
ten inputs. Four inputs represent characteristics of the
evolved ship: the laser power, the laser range, the hull
strength, and the speed. Five inputs represent characteristics
of the opponent ship: the location (direction and distance),
current hull strength, flying direction, and speed. The tenth
input is a random value. The network has two outputs,
controlling the acceleration and rotation of the evolved ship.
The hidden nodes in the network have a sigmoid activation

Figure 3: Sequence illustrating the duelling task. The duelling
spaceships are represented by the small circles. A ship’s direction
is indicated by a line inside the circle, its speed by the length of the
line extending from the ship’s nose. The dotted arc indicates the
laser range. The evolved ship is fixed to the centre of the screen
and directed to the right. In the sequence the evolved ship is
stationary. From left to right, top to bottom, the six pictures show
the following events. (1) Starting position. (2) The opponent moves
towards the evolved ship and (3) bumps into it. Both ships are
firing their lasers. (4) The opponent has determined it should flee
and turns around. (5) The opponent flees and (6) escapes.

function. The outputs of the network are scaled to ship-
specific maximums.

We studied two types of neural networks, namely
feedforward and recurrent networks. The feedforward
networks include fully-connected networks (every neuron
may be connected to any other neuron, as long as a
feedforward flow through the network is guaranteed) and
layered networks (neurons are only connected to neurons in
the next layer). The recurrent neural networks are layered
networks in which recurrent connections are only allowed
between nodes within a layer. Recurrent connections function
as a memory by propagating activation values from the
previous cycle to the target neuron.

The Evolutionary Algorithm

An evolutionary system, implemented in the ELEGANCE
simulation environment (Spronck and Kerckhoffs 1997), was
used to determine the neural network connection weights and
architecture. All simulations are based on the following
settings: a population size of 200, an evolution run of 50
generations, real-valued weight encoding, size-2 tournament
selection, elitism, Thierens’ method of dealing with
competing conventions (Thierens et al. 1993) and size-3
crowding. As genetic operators we used biased weight

mutation (Montana and Davis 1989), nodes crossover
(Montana and Davis 1989), node existence mutation
(Spronck and Kerckhoffs 1997), connectivity mutation
(Spronck and Kerckhoffs 1997), and uniform crossover. In
addition, we added randomly generated new individuals to
prevent premature convergence.

The fitness is defined as the average result of fifty duels
between the evolved ship and its opponent. Each duel lasts
fifty time steps. Each duel in which the ships started with
different characteristics was followed by a duel in which the
characteristics were reversed. At time step ¢ the fitness is
defined as:

0 PH, <0
Fitness, =< PH, / PH, + OH, PH, >0
PH, || PH, OH,

where PH, is the hull strength of the evolved ship at time ¢
and OH, is the opponent hull strength at time ¢. The overall
fitness for a duel is determined as the average of the fitness
values at each time step.

Determining the fitness in this way has the following
properties. If the evolved ship and its opponent both remain
passive the fitness is equal to 0.5. If the opponent ship is
damaged relatively more than the evolved ship, the fitness is
larger than 0.5 and if the reverse is true (or when the evolved
ship is destroyed) the fitness is smaller than 0.5. Therefore,
the fitness function favours attacking if it leads to victory and
favours fleeing otherwise.

RESULTS

Table 1 presents the results of the two types of networks
tested in the experiments. Evidently, the layered feedforward
neural networks with two layers outperforms all other
networks in terms of average and maximum fitness value.
The network with five nodes in each hidden layer scored
only slightly better than the network with ten nodes in each
layer.

At first glance the best fitness results achieved are not very
impressive. A fitness of 0.5 means that the neural controller
results are as effective as the manually-designed algorithm. A
fitness of 0.579 (the best result obtained in the experiments)
may be taken to indicate that the evolved opponent scores
only slightly better than the scripted opponent. Since the
scripted opponent employs a fairly straightforward tactic, one
would expect the neural controller to be able to learn a far
more successful tactic. However, a controller that remains
passive reaches a fitness of 0.362. Given that a scripted

Neural network type

Exps Average Lowest Highest

Recurrent, 1 layer, 5 hidden nodes
Recurrent, 1 layer, 10 hidden nodes
Recurrent, 2 layers, 5 nodes per layer
Feedforward, 7 hidden nodes

Feedforward, 2 layers, 5 nodes per layer
Feedforward, 2 layers, 10 nodes per layer
Feedforward, 3 layers, 5 nodes per layer

5 0.516 0.459 0.532
0.523 0.497 0.541
0.504 0.482 0.531
0.472 0.382 0.527
0.541 0.523 0.579
0.537 0.498 0.576
0.515 0.446 0.574

~N 00 L L O

Table 1: Experimental results. From left to right, the columns indicate the type of neural network
tested, the number of experiments performed with the neural network, the average fitness, the
lowest fitness value and the highest fitness value. The best results are typed in boldface.

opponent performs better
than a stationary ship, a
fitness of 0.638 is a
theoretical upper bound to
the maximum the neural
controller can reach. From
that point of view, a fitness
0f 0.579 is not bad at all.
From the perspective of
playing experience, the
fitness rating as calculated
Figure 4: Qpponent is behind the jn our experiments is not as
evolved ship. important as the objective
result of a fight. A fight can end in victory, defeat, or a
“draw”. For the best controller, we found that 42% of the
encounters ended in victory for the evolved ship, 28% in
defeat, and 30% in a draw. This means that 72% of the
encounters ended in a situation not disadvantageous to the
evolved ship, which achieved 50% more victories than the
opponent ship. Clearly, the evolved ship performs
considerably better than the opponent ship.

DISCUSSION

Our results show that machine learning (i.e., off-line
learning) can be used to create intelligent opponents that
outperform scripted ones. Analysing the behaviour of the
best-performing spaceship, we observed that it showed
appropriate following behaviour when it overpowered the
opponent. In these experiments, such following behaviour
can never be detrimental to the performance. The reason for
this is that the opponent’s script ensures that it will only turn
around to attack again if the hull strength of the attacker
becomes less than its own hull strength, which does not
happen as long as the evolved ship stays behind the
opponent. As we expected the evolved ship avoided bumping
against the opponent while following it. Avoiding bumping is
appropriate behaviour because bumping reduces the evolved
ship’s speed to zero while leaving the opponent’s speed
unaffected, potentially allowing it to escape. However,
contrary to our expectation the evolved ship did not avoid
bumping by reducing its speed when approaching the
opponent, but by swerving as much as needed to keep a
constant relative distance to the opponent.

We further noticed that the evolved ship did not try to flee
when losing a fight. The probable reason is that for a
spaceship to flee, it must turn its back toward the enemy. The
fleeing ship then becomes a target that does not have the
ability to fight back (since lasers only fire from the front of
the ship). As a result, fleeing ships are almost always
destroyed before being able to escape. Such attempts to
escape seem therefore of little use. From this observation we
conclude that a better balance between the power of the
weapons and the versatility of the ships is required to enable
effective escape behaviour,.

Improving the Opponent

A surprising form of behaviour was observed when the
opponent ship started behind the evolved ship, as illustrated
in figure 4. In that case, often the evolved ship attempted to
increase the distance between the two ships, up until the

moment a draw would occur if it would continue to increase
the distance. At that point, the evolved ship turned around
and either repeated the behaviour or started to attack. Figure
5 illustrates this sequence of events.

An explanation for the success of the observed behaviour is
that if the distance between the two ships is maximal, the
evolved ship will have a maximal amount of time to turn
around and face the opponent before it gets within the
opponent’s laser range. Since facing the opponent is required
to counter-attack, the observed behaviour is beneficial to the
evolved ship’s strategy. Therefore, improving the script of
the opponent accordingly may improve its quality
considerably.

Detecting Shortcomings in the Script

By using off-line learning, we could also detect shortcomings
in the scripted opponent. Although we did not specifically
design our experiments for this purpose, we found a
considerable hole in the script controlling the opponent by
observing the behaviour of the two duelling ships.

The opponent bases its decision to flee on a comparison
between the relative hull strengths (e.g., if the opponent’s
relative hull strength is lowest, it concludes that it will most
likely lose the fight and will attempt to escape). The
opponent’s script does not take into account that it is its own
turn to act when it makes this decision. If the comparative
hull strengths are close to each other, this certainly becomes
an important consideration. For instance, if on the initial
approach the opponent ship came within the range of the
lasers of the evolved ship before being able to fire its own
lasers, it would be damaged while the evolved ship would
still be undamaged. Regardless of its own power, this would
cause the opponent’s initial reaction to be to flee. Since in
most cases the opponent would still be able to fire its lasers
once, this behaviour had little influence if the opponent
significantly overpowered the evolved ship, because it would
start to attack again on the next turn. However, if the
strengths of the ships were about equal, we found the evolved
ship to exploit this weakness of the opponent, by attempting
to manoeuvre into a position from which it could fire the first

& Test Space Duel Controller |- [Of]
Evperiment m Player Opponent

Accelleration: 364 93%

Fotation: 086 | Lopower BB3 Speed 364/1447 Maxiot: 150 | | Lerpower 1552 Speed: 831/831 Maxiol: 076

[]| Laange: 1822 Hul 23238 Mas aco: 364 | | Lorrangs 924 Hulb 36/65 Max aces 182

Figure 5: The right panel displays a trace of the movements of the
evolved ship up to the moment that it fires its first shot. The
opponent is overpowered and tries to flee, but the learning ship
follows, as shown in the left panel. In this case the opponent is not
able to escape.

shot. Plugging this hole in the opponent’s script will be a
major improvement to its behaviour.

It is noteworthy that in many commercial turn-based games
we have observed holes in the opponent Al similar to the
hole we discovered in our script. For instance, in many
games it is a good tactic for the player to pass game turns
until the enemy has approached to a certain distance so that
the player can initiate the first attack. Game designers will
seldom let computer opponents employ such a tactic because
it could lead to a stalemate where both the player and the
computer refuse to move, because whoever makes the first
move is at a disadvantage. Similarities with trench warfare
are striking.

Generalisation to Other Games

We have shown how machine learning can be used to
improve opponent intelligence in PICOVERSE. Of course, it
remains an open question whether our findings generalise to
the far more complex commercial PC games. Even the
detection of holes in scripted Al, which is obviously much
simpler than developing a whole new tactic, may prove to be
too difficult if the number of choices at each turn and the
number of turns in an encounter are very large. However, we
expect for most games that encounters do not last “too long”
(to avoid boredom) and the number of choices is not “too
large” (to avoid confusion). Even for commercial PC games
it should therefore usually be possible to detect Al
shortcomings by machine learning.

Employing machine learning to design completely new
tactics, however, is probably severely limited in its uses.
John Laird warns that while neural networks and
evolutionary systems may be applied to tune parameters, they
are “grossly inadequate when it comes to creating synthetic
characters with complex behaviours automatically from
scratch” (Laird 2000). For a relatively simple game as
PICOVERSE machine learning techniques by themselves can
be useful in designing strong tactics. The combination of
machine learning with more structured techniques, such as a
subsumption architecture (Brooks 1991) or a technique
inspired by Laird’s Soar Quakebot (Laird 2001), is likely to
lead to more reliable good results within a shorter time, and
may therefore also be suitable for more complex
environments.

CONCLUSIONS AND FUTURE WORK

By applying off-line learning in the computer strategy game
PICOVERSE we were able to improve opponent intelligence
and to detect shortcomings in the scripted opponent. We
conclude that machine learning can be applied off-line to

improve the quality of opponent intelligence in commercial
computer games. We expect the application of off-line
learning to detect holes in commercial computer game scripts
to be feasible.

Our future research will build upon our results with
PICOVERSE. The release version of PICOVERSE will be more
complex than the simulation we used, and we will run similar
experiments on the more complex opponents in that version.
For creating new opponent tactics, we intend to explore other
machine learning techniques in combination with, for
instance, subsumption architectures. In the long run, we hope
to apply our techniques to improve opponent intelligence in
commercial computer games.

REFERENCES

Brooks, R.A. 1991. “Intelligence without representation.” Artificial
Intelligence, 47:139-159.

Laird, J.E. 2000. “Bridging the Gap Between Developers &
Researchers.” Game Developers Magazine, August 2000.

Laird, J.E. 2001. “It Knows What You’re Going To Do: Adding
Anticipation to a Quakebot.” Proceedings of the Fifth
International Conference on Autonomous Agents, pp. 385-392.

Montana, D. and L. Davis. 1989. “Training feedforward neural
networks using genetic algorithms.” Proceedings of the 11th
International Joint Conference on Artificial Intelligence.
Morgan Kaufman, California, pp. 762-767.

Schaefter, J. 2001. “A Gamut of Games.” Al Magazine, vol. 22 nr.
3, pp. 29-46.

Spronck, P.HM. and E.J.H. Kerckhoffs. 1997. “Using genetic
algorithms to design neural reinforcement controllers for
simulated plants.” Proceedings of the 11th European
Simulation Conference (eds. A. Kaylan & A. Lehmann), pp.
292-299.

Spronck, P.H.M. and H.J. van den Herik. 2002. “Complex Games
and Palm Computers.” Entertainment Computing:
Technologies and Applications. Kluwer. (To be published).

Thierens, D., J. Suykens, J. Vandewalle and B. de Moor. 1993.
“Genetic Weight Optimization of a Feedforward Neural
Network Controller.” Artificial Neural Nets and Genetic
Algorithms (eds. R.F. Albrechts, C.R. Reeves and N.C. Steel).
Springer-Verlag, New York, pp. 658-663.

Van Waveren, J.P.M. and L.J.M. Rothkrantz. 2001. “Artificial
Player for Quake III Arena.” 2nd International Conference on
Intelligent Games and Simulation GAME-ON 2001 (eds.
Quasim Mehdi, Norman Gough and David Al-Dabass). SCS
Europe Bvba, pp. 48-55.

Woodcock, S. 2000. “Game AI: The State of the Industry.”
Gamasutra, http://www.gamasutra.com/features/20001101/
woodcock 01.htm.

ELEGANCE is available from http://www.cs.unimaas.nl/p.spronck/.
PICOVERSE is targeted for a release early 2003 and available from
http://www.picoverse.com/.

