Online Adaptation of Computer
Game Opponent Al

Pieter Spronck Ida Sprinkhuizen-Kuyper Eric Postma

Universiteit Maastricht, P.O. Box 616, 6200 MD Maastricht

Abstract

Online learning in commercial computer games allows computer-controlled opponents
to adapt to human player tactics. For online learning to work in practice, it must be fast,
effective, robust, and efficient. This paper proposes a technique called “dynamic
scripting” that meets these requirements. In dynamic scripting an adaptive rule-base is
used for the generation of intelligent opponents on the fly. The adaptive performance of
dynamic scripting is evaluated in an experiment in which the adaptive players are
pitted against a collective of manually designed tactics in a simulated computer
roleplaying game. The results indicate that dynamic scripting succeeds in endowing
characters with adaptive performance. We therefore conclude that dynamic scripting
can be successfully applied to the online adaptation of computer game opponents.

1 Introduction

The quality of commercial computer games is directly related to their entertainment
value [9]. The general dissatisfaction of game players with the current level of artificial
intelligence for controlling opponents (so-called “opponent AI”) leads to their
preference for human-controlled opponents [6]. Improving the level of opponent Al
(while preserving the characteristics associated with the entertainment value [7]) is
desired in case human-controlled opponents are not available or not feasible.

For complex games most game Al developers resort to scripts [10]. Controlling
opponents with complex abilities requires these scripts to be quite long [1]. Two major
weaknesses of long scripts are that (1) they are prone to containing errors because they
are complex, and (2) they cannot deal with unforeseen player tactics because they are
static. As a result, a human player can easily defeat supposedly tough opponents by
exploiting the “holes” in their scripts. Evidently, easily defeatable opponents hamper the
entertainment value of commercial computer games.

In our view, there are two ways to improve the quality of scripted opponent Al. The
first way is to employ offline learning prior to the release of a game to deal with the
problem of holes in the scripts that control the opponents. Our earlier work showed
offline learning techniques to be successful in the identification of holes and even in the
discovery of novel tactics [8]. The second way of improving the quality of scripted
opponent Al is to apply online learning after the game has been released. Online
learning allows the opponents to adapt to changes in human player tactics. Even though
it has been shown to be feasible for simple games [2], unsupervised online learning is
widely disregarded by commercial game developers [11] and literature on unsupervised
online learning in commercial computer games is scarce. However, we believe it to be

of great potential for improving the entertainment value of commercial computer games.

Our research question reads: How can unsupervised online learning be incorporated
in commercial computer games? This paper proposes a novel technique called “dynamic
scripting”, that realises unsupervised online adaptation of scripted opponents, and
reports on preliminary experiments performed to assess the adaptive performance
obtained with dynamic scripting.

The outline of the remainder of the paper is as follows. Section 2 discusses Al in
computer roleplaying games. Section 3 describes our dynamic scripting technique. The
experimental setup for evaluating the adaptive performance of dynamic scripting is
described in section 4. The results of the experiments are presented and discussed in
sections 5 and 6, respectively. Finally, section 7 concludes that dynamic scripting has
the potential to be successfully incorporated in commercial games.

2 Computer Roleplaying Game Al

In Computer RolePlaying Games (CRPGs) the human player is situated in a virtual
world represented by a single character or group of characters called a “party”. Each
character is of a specific type (e.g., a fighter or a wizard) and has certain characteristics
(e.g., weak but smart). In most CRPGs, the human player goes on a quest, which
involves conversing with the world’s inhabitants, solving puzzles, discovering secrets,
and defeating opponents in combat. During the quest the human-controlled characters
gather “experience”, thereby gaining more and better abilities, such as advanced spell-
casting powers. Some examples of modern CRPGs are BALDUR’S GATE, NEVERWINTER
NIGHTS, MORROWIND and EVERQUEST.

Opponent Al in CRPGs is almost exclusively based on scripts, i.e., lists of rules that
are executed sequentially. Scripts have four main advantages;, they are (1)
understandable, (2) easy to implement, (3) easily extendable, and (4) useable by
nonprogrammers [10]. Usually scripts are implemented in a formal language that has
functions to test environmental conditions, to check a character’s status, and to express
commands. During the game-development phase scripts are manually adapted to ensure
they exhibit the desired behaviour. After the game is released the scripts and associated
behaviours remain unchanged (unless game patches are issued to update the scripts).

To deal with all possible choices and all possible consequences of actions the scripts
controlling the opponents are of
relatively high complexity. In
contrast to classic CRPGs, such
as the ULTIMA series, in modern
CRPGs the human and opponent
parties are often of similar
composition (see figure 1 for an
example), which entails that the
opponent Al should be able to
deal with the same kind of
complexities the human player
faces. The challenge such an
encounter offers can be highly

enjoyable for human players. Figure 1: An encounter between two parties in BALDUR’S GATE.

However, the scripts controlling the opponents cannot anticipate on all tactics exhibited
by human players. As a consequence, human players usually have little trouble in
identifying and exploiting the weaknesses in the opponents. Since these weaknesses
usually permeate throughout the entire game, this eventually leads to a decrease in
entertainment value of the game.

3 Dynamic Scripting

We introduce dynamic scripting as a technique to overcome the limitations of static
scripts in CRPGs. In dynamic scripting, the scripts controlling the opponents are
modified during the game to adapt to the tactics of the human player. For online learning
to work in practice, it must be fast (computationally cheap), effective (maintain at least
the quality of the unadapted scripts), robust (able to deal with the inherent randomness
of computer games), and efficient (require few experiments).

To achieve the goal of fast, effective, robust and efficient dynamic scripting, we
need a learning algorithm of high performance. The two main factors of importance
when attempting to achieve high performance for a learning mechanism are using
deterministic experiments and adding knowledge [4]. The nature of our environment
precludes determinism, so in our case it is imperative that the learning process is based
on knowledge. To this end, our dynamic scripting technique relies on a rulebase that
contains manually designed rules based on domain-specific knowledge.

The dynamic-scripting process is illustrated in figure 2. A single rulebase is
associated with every opponent. Each rule in the rulebase has a weight indicating its
importance. At the start of an encounter, a new script is generated for each opponent by
randomly selecting a fixed number of rules from its rulebase. The probability of a rule
being selected depends on its weight; i.e., rules with larger weights have a higher
probability of being selected.

The learning mechanism in our dynamic scripting technique is inspired by
reinforcement learning techniques [5]. It has been adapted for use in games because

opponent \ I,’
party ! ! party
i |
1 i
: :
generate scripted H H human
script Generated control | H | control
Rulebase for script for A ' | Bl
computer- computer- \ | H /
controlled controlled | H
opponent A opponent A U U i i U U
between player
update weights by encounter results party and
opponent party
T
| I Diayer
i I
Generated N | 1 . piayer
Rulebase for script for - H |
computer- ge‘ne.r ate com};ulcr— scripted \ B i i / human
controlled seript controlled control i i control
opponent B opponent B | 1
1 i
_/ i i
| i
/ \

Figure 2: The dynamic-scripting process. For each computer-controlled opponent a rulebase
generates a new script at the start of an encounter. After an encounter is over, the weights in
the rulebase are adapted to reflect the results of the fight.

regular reinforcement learning techniques are unsuitable for this purpose, in particular
since (1) it is difficult to decide what information should be placed in a state vector, and
(2) reinforcement learning generally adapts too slowly for online use in games [3]. Our
implementation is as follows. Upon completion of the encounter, the weights of the rules
employed in the combat are adapted depending on their contribution to the outcome.
Increasing the weight rewards rules that lead to success, whereas decreasing the weight
punishes rules that lead to failure. The remaining rules get updated so that the total
weight of the rules in the rulebase remains unchanged.

The dynamic-scripting technique meets at least three of the four requirements listed
above. First, it is fast because it only requires the extraction of rules from a rulebase and
the updating of weights once per encounter. Second, it is effective because all rules in
the rulebase are based on domain knowledge (although they may be inappropriate for
certain situations). Third, it is robust because rules are not removed immediately when
punished. The dynamic-scripting technique is believed to meet the fourth requirement of
efficiency because with appropriate weight-updating parameters it can adapt already
after a few encounters. To determine whether this belief is warranted, we performed an
experiment with dynamic scripting in a simulated CRPG situation.

4 Experimental Setup

This section describes the experimental setup used to test the efficiency of dynamic
scripting in CRPGs. It describes the problem situation to which dynamic scripting is
applied (4.1), the scripts and rulebases (4.2), the fitness functions (4.3), the learning
parameters (4.4) and the actual experiments (4.5).

4.1 The CRPG Simulation

The gameplay mechanism in our CRPG simulation was designed to resemble the
popular BALDUR’S GATE games (see figure 1). These games contain the most complex
and extensive gameplay system found in modern CRPGs, closely resembling classic
“pen ’'n paper” roleplaying games. Our simulation entails an encounter between player
and opponent parties of similar composition. Each party consists of two fighters and two
wizards of equal experience level. The armament and weaponry of the party is static;
each character is allowed to select two (out of three possible) magic potions; and the
wizards are allowed to memorise seven (out of 21 possible) spells. The spells
incorporated in the simulation are of varying types, amongst which damaging spells,
blessings, curses, charms, area-effect spells and the summoning of allies.

The choices for potions and spells are made before the encounter starts and depend
on the (generated) scripts. In the simulation, this is done as follows. Before the
encounter starts the script is scanned to find rules containing actions that refer to
drinking potions or casting spells. When such a rule is found, a potion or spell which can
be used in that action is selected. If the character controlled by the script is allowed to
possess the potion or spell, it is added to the character’s inventory.

4.2 Scripts and Rulebases

The scripting language is designed as to define rules composed of an optional
conditional statement and a single action. The conditional statement consists of one or

more conditions combined with logical ANDs and ORs. Conditions can refer to a variety
of environmental conditions, such as the distances separating characters, the characters’
health, and the spells that are suffered or benefited from. There are five basic actions: (1)
attacking an enemy, (2) drinking a potion, (3) casting a spell, (4) moving, and (5)
passing. In the scripting language, spells, potions, locations and characters can be
referred to specifically (e.g., “cast spell ‘magic missile’ at closest enemy wizard”),
generally (e.g., “cast any offensive spell at a random enemy”) or somewhere in-between
(e.g., “cast the strongest damaging spell available at the weakest enemy”).

Scripts are executed in sequential order. For each rule the condition (if present) is
checked. If the condition is fulfilled (or absent), the action is executed if it is both
possible and useful in the situation at hand. If no action is selected when the final rule is
checked, the default action ‘pass’ is used.

As explained in section 3, the rulebase consists of a list of weighted rules. The
weight determines the probability that a rule from the rulebase is selected for the script
that is generated at the start of an encounter. In addition, each rule is assigned a priority.
The priority determines the position of the rule in the script. If two rules with the same
priority are selected, the rule with the highest weight value gets precedence over the
other. If both rules have the same weight value, their ranking is determined randomly.

4.3 The Fitness Functions

For the weight adaptation mechanism two fitness functions are used in the CRPG
simulation: a fitness function for the party as a whole, and a fitness function for each
individual character. The fitness of a party is a value on the unit interval [0,1]. The
fitness is defined to be zero if the party has lost the fight, and 0.5 + half the average
remaining health of all party members if the party has won the fight.

The fitness of a character is also a value on the unit interval [0,1], that is based on
four factors, namely (1) the average remaining health of all party members (including
the character), (2) the average damage done to the opposing party, (3) the remaining
health of the character (or, if he died, the time of death) and (4) the party fitness. The
fitness function for individual characters assigns a large reward to a victory of its party
(even if the individual itself did not survive), a smaller reward to the individual’s own
survival, and an even smaller reward to the survival of its comrade party members and
the damage they inflicted on the opposing party. This definition therefore attempts to
illicit the emergence of successful party behaviour, and in a lesser sense the aim of a
character to ensure its own survival.

4.4 The Learning Parameters

The learning parameters determine how the character fitness of a script is translated into
adaptations of the weights associated with the rules in the rulebase. For our experiment
we set the break-even point to 0.3, i.e., with a character fitness lower than 0.3 the
weights of the rules executed during the encounter were penalised whereas those with a
fitness higher than 0.3 were rewarded. All weights in the rulebase were initialised with a
value of 100 and were constrained to values between 0 and 2000.

The maximum reward (awarded to scripts with the maximum fitness of 1) was set to
100. The maximum penalty (issued for a minimum fitness of 0) was set to 30. At the
break-even point the weights are not adapted. For other fitness values the weight

adaptation is calculated as a linear mapping between the break-even point and the
maximum, e.g. a fitness of 0.65 was rewarded with 50 points. To keep the sum of all
weight values in a rulebase constant, weight changes correspond to a redistribution of
weights in the rulebase. Note that the weight shifts in the rulebase will, if successful,
generate opponent behaviour that favours winning a fight. Whether or not this is fun for
the human player is currently not taken into account, although stronger computer-
controlled opponents are usually considered to be more fun for experienced players.

The size of the script for a fighter was set to five rules, which were selected out of a
rulebase containing 20 rules. For a wizard, the script size was set to ten rules, which
were selected out of a rulebase containing 50 rules. One or two default rules were added
to the end of each script to ensure the execution of an action in case none of the rules
from the rulebase could be activated.

4.5 The Experiments

The experiments aim at assessing the adaptive performance of an opponent party
controlled by the dynamic scripting technique, against a player party controlled by static
scripts. To quantify the relative performance of the opponent party against the player
party, after each encounter for both parties we calculate the average of the fitness over
the last ten encounters. If for the opponent party this number is higher, the opponent
party outperforms the player party. We define the average turning point as the encounter
after which the opponent party first outperforms the player party for at least ten
consecutive encounters. Furthermore, we define the absolute turning point as the first
encounter after which a consecutive sequence of encounters in which the opponent party
wins is never followed by a longer consecutive sequence in which the opponent party
loses. Low values for the turning points indicate good efficiency of dynamic scripting,
since they entail that the opponent party, which uses dynamic scripting, needs only a
few encounters to achieve the goal of outperforming an unchanging tactic, as used by
the player party.

Four different static tactics were employed by the player party, namely the
following: (1) strongly offensive, (2) disabling (freezing the enemies before attacking
them), (3) cursing (hindering and weakening the enemies), and (4) strongly defensive.
To assess the ability of the dynamic-scripting technique to cope with sudden changes in
tactics, we defined three additional composite tactics: (1) random-party (which
randomly picks one of the four basic tactics for each encounter), (2) random-character
(whereby each character picks his own tactic independent from his comrades), and (3)
consecutive-party (whereby a party keeps using one of the four basic tactics until it loses
a fight, then switches to the next tactic).

For each of the basic tactics we ran 21 tests, and for each of the composite tactics we
ran 11 tests. The results of these experiments are presented in the next section.

5 Results

Table 1 presents the results of the experiments described in section 4. We make the
following three observations. The first observation is that the disabling tactic is easily
defeated. Apparently the disabling tactic is not a good tactic, because it does not require
adaptation of the rulebase to be dealt with. The second striking observation is that for

Average Turning Point Absolute Turning Point

Tactic Low High Avg. Med. | Low High Avg. Med.
Offensive 27 164 57 54 27 159 53 45
Disabling 11 14 11 11 1 10 3 1
Cursing 13 1784 150 31 4 1778 144 31
Defensive 11 93 31 23 1 87 27 18
Random Party 13 256 56 29 5 251 50 26
Random Char. 11 263 53 30 1 249 47 33
Consecutive 11 160 61 50 3 152 55 48

Table 1: Results of the experiments described in section 4. For each tactic the lowest,
highest, average and median average and absolute turning points are shown.

both turning points the average is (in most cases) significantly higher than the median.
The explanation is found in the rare occurrence of extremely high turning points. During
early encounters chance can cause potentially successful rules to get a low rating or
unsuccessful rules to get a high rating. As a result, the rulebase diverges from a good
weight distribution to which it has trouble to return. Our technique has no mechanism to
reduce the effect of early divergence, but it is clear that such a mechanism is needed to
make dynamic scripting a useful technique. Third, the consecutive tactic, which is
closest to human player behaviour, is overall the most difficult to defeat with dynamic
scripting. Nevertheless, our dynamic-scripting technique is capable of defeating this
tactic rather quickly.

6 Discussion

Our experimental results show that dynamic scripting is capable of adapting rapidly to
static or changing tactics. Hence, dynamic scripting is efficient and fulfils the fourth
requirement stated in section 3.

Although dynamic scripting turns out to be surprisingly efficient, the question
remains whether it is sufficiently efficient for application in commercial games. For
action CRPGs, such as DIABLO, the answer would be an unequivocal yes, because action
CRPGs typically pit the player against hundreds of similar opponents. For more strategic
CRPGs, such as BALDUR’S GATE, it depends on the definition of “similar opponents”.
While each opponent wizard in the game might be different, overall successful tactics
for one wizard will also work for most other wizards. Furthermore, in our experiments
we started our rulebase from scratch with identical weights for all rules. In a commercial
release the rulebase would have been trained offline against pre-programmed scripts (cf.
our experiments with the consecutive-party tactic). Confronted with standard tactics
such a rulebase would adapt very quickly, while it still would have the ability to learn to
generate good scripts to deal with novel tactics.

Finally, it should be noted that while our fitness criterion relied heavily on winning
and losing encounters, in commercial games the fitness criterion should be different. In
commercial games, the human player should (because of entertainment purposes) and
will (because of saving and reloading functionalities) always win an encounter. In an
actual commercial game fitness should rely more on the length of a fight and the amount
of damage done. It might even be useful to punish a rulebase for winning a fight, so that
the entertainment value of the game for weaker players is assured.

7 Conclusions

In this paper we proposed dynamic scripting as a technique to deal with online
adaptation of opponent Al, suitable for complex commercial computer games such as
CRPGs. Dynamic scripting is based on the automatic online generation of Al scripts for
computer-game opponents by means of an adaptive rulebase. From our experimental
results, we conclude that that dynamic scripting is fast, effective, robust, and efficient
and therefore has the potential to be successfully incorporated in commercial games,
although some more work must be done before the technique is ready to be implemented
in actual commercial games.

References

[1] Mark Brockington and Mark Darrah. How Not to Implement a Basic Scripting
Language. Al Game Programming Wisdom (ed. S. Rabin), pp. 548-554, Charles
River Media, 2002.

[2] P. Demasi and A.J. de O. Cruz. Online Coevolution for Action Games. GAME-ON
2002 3" International Conference on Intelligent Games and Simulation (eds. Q.
Medhi, N. Gough and M. Cavazza), pp. 113-120, SCS Europe Bvba, 2002.

[3] John Manslow. Learning and Adaptation. 41 Game Programming Wisdom (ed. S.
Rabin), pp. 557-566. Charles River Media, 2002.

[4] Zbigniew Michalewicz and David B. Fogel. How fo Solve It: Modern Heuristics.
Springer Verlag, 2000.

[S] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Second Edition, Prentice Hall, Englewood Cliffs, New Jersey, 2002.

[6] Jonathan Schaeffer. A Gamut of Games. A/ Magazine, Vol. 22, No. 3, pp. 29-46,
2001.

[7] Bob Scott. The Illusion of Intelligence. AI Game Programming Wisdom (ed. S.
Rabin), pp. 16-20, Charles River Media, 2002.

[8] Pieter Spronck, Ida Sprinkhuizen-Kuyper and Eric Postma. Improving Opponent
Intelligence through Machine Learning. Proceedings of the Fourteenth Belgium-
Netherlands Conference on Artificial Intelligence (eds. Hendrik Blockeel and Marc
Denecker), pp. 299-306, 2002.

[9] Paul Tozour. The Evolution of Game Al. A Game Programming Wisdom (ed. S.
Rabin), pp. 3-15, Charles River Media, 2002.

[10] Paul Tozour. The Perils of Al Scripting. Al Game Programming Wisdom (ed. S.
Rabin), pp. 541-547, Charles River Media, 2002.

[11] Steven Woodcock. Game Al: The State of the Industry. Game Developer
Magazine, August 2000.

	Introduction
	Computer Roleplaying Game AI
	Dynamic Scripting
	Experimental Setup
	The CRPG Simulation
	Scripts and Rulebases
	The Fitness Functions
	The Learning Parameters
	The Experiments

	Results
	Discussion
	Conclusions

