ONLINE ADAPTATION OF GAME OPPONENT AI
WITH DYNAMIC SCRIPTING

Pieter Spronck, Ida Sprinkhuizen-Kuyper and Eric Postma
Universiteit Maastricht / IKAT
P.O. Box 616, NL-6200 MD Maastricht, The Netherlands
E-mail: p.spronck@cs.unimaas.nl

KEYWORDS
Gaming, artificial intelligence, machine learning,
unsupervised online learning, opponent Al.

ABSTRACT

Unsupervised online learning in commercial computer
games allows computer-controlled opponents to adapt to the
way the game is being played, thereby providing a
mechanism to deal with weaknesses in the game Al and to
respond to changes in human player tactics. For online
learning to work in practice, it must be fast, effective, robust,
and efficient. This paper proposes a novel technique called
“dynamic scripting” that meets these requirements. In
dynamic scripting an adaptive rulebase is used for the
generation of intelligent opponents on the fly. The
performance of dynamic scripting is evaluated in an
experiment in which the adaptive players are pitted against a
collective of manually designed tactics in a simulated
computer roleplaying game and in a module for the state-of-
the-art commercial game NEVERWINTER NIGHTS. The results
indicate that dynamic scripting succeeds in endowing
computer-controlled opponents with successful adaptive
performance. We therefore conclude that dynamic scripting
can be successfully applied to the online adaptation of
computer game opponent Al

1 INTRODUCTION

The quality of commercial computer games is directly
related to their entertainment value (Tozour 2002a). The
general dissatisfaction of game players with the current level
of artificial intelligence for controlling opponents (so-called
“opponent AI”) makes them prefer human-controlled
opponents (Schaeffer 2001). Improving the quality of
opponent Al (while preserving the characteristics associated
with high entertainment value (Scott 2002)) is desired in
case human-controlled opponents are not available.

In recent years some research has been performed to
endow relatively simple games, such as the action game
QUAKE, with advanced opponent Al (Laird 2001). However,
for more complex games, such as Computer RolePlaying
Games (CRPGs), where the number of choices at each turn
ranges from hundreds to even thousands, the incorporation
of advanced Al is much more difficult. For these complex
games most Al researchers resort to scripts, i.e. lists of rules
that are executed sequentially (Tozour 2002b). These scripts
are generally static and tend to be quite long and complex
(Brockington and Darrah 2002). This leads to two major
problems, namely the problem of complexity and the
problem of adaptability.

The problem of complexity entails that because of their
complexity, Al scripts are likely to contain weaknesses,

which can be exploited by human players to easily defeat
supposedly tough opponents. The problem of adaptability
entails that because they are static, scripts cannot deal with
unforeseen tactics employed by the human player and cannot
scale the difficulty level exhibited by the game Al to cater to
both novice and experienced human players. These two
problems, which are common for the opponent Al of modern
CRPGs (Spronck et al. 2003), hamper the entertainment
value of commercial computer games.

There are two ways to apply machine learning techniques
to improve the quality of scripted opponent Al The first way
is to employ offline learning prior to the release of a game to
deal with the problem of complexity (Spronck et al. 2003).
The second way is to apply online learning after the game
has been released to deal with both the problem of
complexity and the problem of adaptability. Online learning
allows the opponents to automatically repair weaknesses in
their scripts that are exploited by the human player, and to
adapt to changes in human player tactics and playing style.
While supervised online learning has been sporadically used
in commercial games (Evans 2002), unsupervised online
learning is widely disregarded by commercial game
developers (Woodcock 2000), even though it has been
shown to be feasible for simple games (Demasi and Cruz
2002, 2003). The present study shows that unsupervised
online learning is of great potential for improving the
entertainment value of commercial computer games.

Our research question reads: How can unsupervised online
learning be incorporated in commercial computer games to
improve the quality of the opponent AI? We propose a novel
technique called dynamic scripting that realises online
adaptation of scripted opponent AI and report on
experiments performed in both a simulated and an actual
commercial CRPG to assess the adaptive performance
obtained with the technique.

The outline of the remainder of the paper is as follows.
Section 2 discusses opponent Al in CRPGs. Section 3
describes online learning of computer game Al and the
dynamic scripting technique. The experiments performed for
evaluating the adaptive performance of dynamic scripting
are described in section 4 and 5. In section 4 dynamic
scripting is used in a simulated CRPG. In section 5 it is
applied in a module for the state-of-the-art CRPG
NEVERWINTER NIGHTS. Section 6 discusses the results
achieved with dynamic scripting. Section 7 concludes and
points at future work.

2 OPPONENT INTELLIGENCE IN CRPGS

In Computer RolePlaying Games (CRPGs) the human player
is situated in a virtual world represented by a single
character or a party of characters. Each character is of a
specific type (e.g., a fighter or a wizard) and has certain

characteristics (e.g., weak but smart). In most CRPGs, the
human player goes on a quest, which involves conversing
with the world’s inhabitants, solving puzzles, discovering
secrets, and defeating opponents in combat. During the quest
the human-controlled characters gather experience, thereby
gaining more and better abilities, such as advanced spell-
casting powers. Some examples of modern CRPGs are
BALDUR’S GATE, NEVERWINTER NIGHTS and MORROWIND.

While combat in action games generally relies mainly on
fast reflexes of the human player, combat in a CRPG usually
relies on complex, strategic reasoning. The complexity arises
from the fact that in each combat round both the human
player and the computer-controlled opponents have a
plethora of choices at their disposal. For instance, characters
can execute short or long range attacks with different kinds
of weapons, they can drink various potions, and they can
cast a wide range of magic spells. The probabilistic nature of
the results of these actions adds to the complexity of the
combat process.

Opponent Al in CRPGs is almost exclusively based on
scripts. Scripts are the technique of choice in the game
industry to implement opponent Al in CRPGs, because they
are understandable, predictable, adaptable to specific
circumstances, easy to implement, easily extendable, and
useable by non-programmers (Tozour 2002b, Tomlinson et
al. 2003). Usually scripts are written and represented in a
formal language that has special functions to test
environmental conditions, to check a character’s status, and
to express commands. During the game-development phase
scripts are manually adapted to ensure that they exhibit the
desired behaviour. After a game’s release the scripts and
associated behaviours remain unchanged (unless they are
updated in a game patch).

To deal with all possible choices and all possible
consequences of actions the scripts controlling the opponents
are of relatively high complexity. In contrast to classic
CRPGs, such as the ULTIMA series, in modern CRPGs the
human and opponent parties are often of similar composition
(see figure 1 for an example), which entails that the
opponent Al should be able to deal with the same kind of
complexities as the human player faces. The challenge such
an encounter offers can be highly enjoyable for human
players. However, as already mentioned in the introduction,
there are two major problems with application of complex,
static scripts to implement opponent Al, namely the problem
of complexity and the problem of adaptability. Unsupervised

-

Figure 1: An encounter between two parties in BALDUR’S GATE.

online learning has the potential to solve these problems.
This is discussed in the following sections.

3 ONLINE LEARNING OF GAME Al

Unsupervised online learning of computer game Al entails
that automatic learning techniques are applied that adapt the
Al while the game is being played. In order for unsupervised
online learning to be applicable in practice, it must meet four
requirements, which are discussed in subsection 3.1. In
subsection 3.2 we present dynamic scripting as an
unsupervised online learning technique that meets these
requirements.

3.1 Requirements for Online Learning

For unsupervised online learning of computer game Al to be
applicable in practice, it must be fast, effective, robust, and
efficient. Below we discuss each of these four requirements
in detail.

1. Fast. Since online learning takes place during
gameplay, the Ilearning algorithm should be
computationally fast. This requirement excludes
computationally intensive learning methods such as
model-based learning.

2. Effective. In providing entertainment for the player, the
adapted scripts should be at least as challenging as
manually designed ones (the occasional occurrence of a
non-challenging opponent being permissible). This
requirement excludes random learning methods, such as
evolutionary algorithms.

3. Robust. The learning mechanism must be able to cope
with a significant amount of randomness inherent in
most commercial gaming mechanisms. This requirement
excludes deterministic learning methods that depend on
a gradient search, such as straightforward hill-climbing.

4. Efficient. In a single game, a player experiences a
limited number of encounters with similar groups of
opponents. Therefore, the learning process should rely
on just a small number of trials. This requirement
excludes slow-learning techniques, such as neural
networks, evolutionary algorithms and reinforcement
learning.

To meet these four requirements, we need a learning
algorithm of high performance. The two main factors of
importance when attempting to achieve high performance
for a learning mechanism are the exclusion of randomness
and the addition of domain-specific knowledge
(Michalewicz and Fogel 2000). Since randomness is
inherent in commercial computer games it cannot be
excluded, so in this case it is imperative that the learning
process is based on domain-specific knowledge.

3.2 Dynamic Scripting

Dynamic scripting is an unsupervised online learning
technique for commercial computer games. It maintains
several rulebases, one for each opponent type in the game.
These rulebases are used to create new scripts that control
opponent behaviour every time a new opponent is generated.
The rules that comprise a script that controls a particular
opponent are extracted from the rulebase corresponding to
the opponent type. The probability that a rule is selected for

opponent

party
©° o
generate scripted ~
script Generated control o
Rulebase for script for el A
computer- computer-
controlled controlled
opponent A opponent A UU
update weights by encounter results
© o
~
Generated o
Rulebase for script for . Ll B
generate scripted
computer- script computer- control
controlled P controlled
opponent B opponent B UU

player
party
° o
e human
P control
bl
Combat
between player
party and
opponent party
oo human
>~ player
dl
-
human
control

Figure 2: The dynamic scripting process. For each computer-controlled opponent a rulebase generates a new script at the start of an
encounter. After an encounter is over, the weights in the rulebase are adapted to reflect the results of the fight.

a script is influenced by a weight value that is associated
with each rule. The rulebase adapts by changing the weight
values to reflect the success or failure rate of the
corresponding rules in scripts. The size of the weight
changes is determined by a weight-update function.

The dynamic scripting process is illustrated in figure 2 in
the context of a commercial game. The rulebase associated
with each opponent contains manually designed rules that
use domain-specific knowledge. At the start of an encounter,
a new script is generated for each opponent by randomly
selecting a specific number of rules from its associated
rulebase. There is a linear relationship between the
probability a rule is selected and its associated weight. The
order in which the rules are placed in the script depends on
the application domain. A priority mechanism can be used to
let certain rules take precedence over other rules.

The learning mechanism in our dynamic scripting
technique is inspired by reinforcement learning techniques
(Russell and Norvig 2002). It has been adapted for use in
games because regular reinforcement learning techniques do
not meet the requirement of efficiency (Manslow 2002). In
the dynamic scripting approach, learning proceeds as
follows. Upon completion of an encounter, the weights of
the rules employed during the encounter are adapted
depending on their contribution to the outcome. Rules that
lead to success are rewarded with a weight increase, whereas
rules that lead to failure are punished with a weight decrease.
The remaining rules get updated so that the total of all
weights in the rulebase remains unchanged.

The dynamic scripting technique meets at least three of the
four requirements listed in 3.1. First, it is computationally
fast, because it only requires the extraction of rules from a
rulebase and the updating of weights once per encounter.
Second, it is effective, because all rules in the rulebase are
based on domain knowledge (although they may be
inappropriate for certain situations). Third, it is robust
because rules are not removed immediately when punished.

The dynamic scripting technique is believed to meet the
fourth requirement of efficiency because with appropriate
weight-updating parameters it can adapt after a few
encounters only. To determine whether the belief is

warranted, we performed two experiments with dynamic
scripting. The first of these experiments, described in section
4, tested the efficiency of dynamic scripting in a simulated
CRPG situation. The second experiment, described in
section 5, tested dynamic scripting in an actual state-of-the-
art CRPG to confirm that the achieved results can be
repeated in practice.

4 SIMULATION EXPERIMENTS

This section describes the experiments used to test the
efficiency of dynamic scripting in a simulated CRPG. It
describes the problem situation to which dynamic scripting
is applied (4.1), the scripts and rulebases (4.2), the weight-
update function (4.3), the actual experiments (4.4) and the
achieved results (4.5).

4.1 The CRPG Simulation

The gameplay mechanism in our CRPG simulation,
illustrated in figure 3, was designed to resemble the popular
BALDUR’S GATE games (see figure 1). These games (along

& MiniGate - [C:\MiniGate\Test\TestParty.inil

Paty NPC RAun 4l Options [nfo Help
LRI)l@lnul_@@cmco@@\rxnn.xa!-_ﬂzm

H & Ir iﬁj@ ;n
ﬁ ” W ‘ggééiﬂééi
w4
IR

T W
I

4
B &
[
B e

.32 Chvaic i i Blue Wiz B. SEVI”D thiow faik (1< =]
12). BI ard B rex 5 3 points of dam:

o3 S s Fobter B, Savi throve s (1 < 14]
033 Binciess i Fod Waard & Savrallon fls 912
0.3.8: Red Fighter B hits Blue Wizard B's Mini

'
[o ngmer o Bl Woma s inon 3
for 2+1 points of dam:

%

2
%

A 3 iiﬁﬁ

-3

055 Bl Figher & W R Fighter B fox 543 peins of
damage. Bl Fighter 4 hits Fied Fighler B for 5+1 points of
damage.

[Encounter 2 [Tum @ [Round3 [Segmentd | 354

91313 [A

Figure 3: A screenshot of the testing environment. To the left is the
combat area, the upper right shows the status of all characters in the
encounter, and to the lower right a report is shown of the current effects.

Magic Missile creates missiles of magical energy that unerringly strike a target creature.
Each missile inflicts 1 to 5 points of damage. Starting with one missile at level 1, the wizard
gains an additional missile every two levels, up to five missiles at level 9.

Charm Person affects a single humanoid, who receives a saving throw vs. spells to avoid
the effect. A charmed individual fights for the caster’s party. The spell is broken after 5
combat rounds, when an ally tries to harm the target, or through a second charm spell.

Mirror Image creates one duplicate of the caster for each caster level up to nine duplicates
at level 9. Each duplicate absorbs the damage of one attack against the wizard, after which it
disappears. The duplicates last a maximum of 3 rounds for each caster level.

3z & <

Deafness affects a single target. If the target fails a saving throw vs. spells, he or she becomes
totally deaf for the duration of one day. Deafened spellcasters have a 50% chance to miscast
any spell. The only cure is a Dispel Magic cast onto the target.

@

Stinking Cloud creates a cloud of nauseous vapours with a radius of 20 feet around a target

w location. Any creature caught within the cloud must, each round, save vs. poison or be
unable to move or act for 1 to 5 rounds. The cloud remains one round for each caster level.

N Fireball generates an explosion of flames that does 1 to 6 points of fire damage for every

\}é level of the caster (up to level 10) to any creature caught in the blast. Affected creatures

receive a saving throw vs. spells for half damage.

Monster Summoning I conjures 1 to 3 level 3 woodland animals which fight under the
command of the caster's party. The animals remain until they are slain or the spell expires,
which happens after 3 rounds plus 1 round per caster level.

cJ

Table 1: Seven spell examples.

with a few others) contain the most complex and extensive
gameplay system found in modern CRPGs, closely
resembling classic non-computer roleplaying games (Cook
et al. 2000). Our simulation entails an encounter between
player and opponent parties of similar composition. Each
party consists of two fighters and two wizards of equal
experience level. The armament and weaponry of the party is
static; each character is allowed to select two (out of three
possible) magic potions; and the wizards are allowed to
memorise seven (out of 21 possible) spells. The spells
incorporated in the simulation are of varying types, amongst
which damaging spells, blessings, curses, charms, area-effect
spells and summoning spells. Table 1 lists seven spell
examples.

Instead of having the choices of spells and potions for
opponents adapt in a separate process, we made them
depend on the (generated) scripts as follows. Before the
encounter starts the script is scanned to find rules containing
actions that refer to drinking potions or casting spells. When
such a rule is found, a potion or spell that can be used in that
action is selected. If the character controlled by the script is
allowed to possess the potion or spell, it is added to the
character’s inventory.

4.2 Scripts and Rulebases

The scripting language is designed to enable the expression
of rules composed of an optional conditional statement and a
single action. The conditional statement consists of one or
more conditions combined with logical ANDs and ORs.
Conditions can refer to a variety of environmental variables,
such as the distances separating characters, the characters’
health, and the spells that are suffered or benefited from.
There are five basic actions: (1) attacking an enemy, (2)
drinking a potion, (3) casting a spell, (4) moving, and (5)
passing. In the scripting language, spells, potions, locations
and characters can be referenced specifically (e.g., “cast
spell ‘magic missile’ at closest enemy wizard”), generally
(e.g., “cast any offensive spell at a random enemy”) or
somewhere in-between (e.g., “cast the strongest damaging
spell available at the weakest enemy”). Rules in the scripts
are executed in sequential order. For each rule the condition
(if present) is checked. If the condition is fulfilled (or
absent), the action is executed if it is both possible and
useful in the situation at hand. If no action is selected when

the final rule is checked, the default action ‘pass’ is used.

In dynamic scripting rules for a script are selected with a
probability determined by the rule weights. To determine the
rule order in the CRPG simulation we have assigned each
rule a priority value, whereby rules with a higher priority
take precedence over rules with a lower priority. For rules
with equal priority we let the rules with higher weights take
precedence. If two rules have both equal priorities and equal
weights, their order is determined randomly.

The size of the script for a fighter was set to five rules,
which were selected out of a rulebase containing 20 rules.
For a wizard, the script size was set to ten rules, which were
selected out of a rulebase containing 50 rules. To the end of
each script one or two default rules were added to ensure the
execution of an action in case none of the rules from the
rulebase could be activated.

4.3 The Weight-update Function

The weight-update function is based on two so-called
“fitness functions”: a fitness function for the party as a
whole, and a fitness function for each individual character.

The fitness of a party is a value in the range [0,1], which is
zero if the party has lost the fight, and 0.5 plus half the
average remaining health of all party members if the party
has won the fight. The fitness F for the party p (consisting of
four party members) is formally defined as:

0 {vne plnn)<0}
F(P)=1054+0125% ") e pia(a)> 0}

= mh(n)

where mh(n) is a function that returns the health of character
n at the start of the encounter (as a natural number that is
greater than zero) and A(n) is a function that returns the
health of character » at the end of the encounter (as a natural
number between zero and mh(n)).

The fitness of a character ¢ is a value in the range [0,1],
that is based on four factors, namely (1) the average
remaining health of all party members (including character
¢), (2) the average damage done to the opposing party, (3)
the remaining health of character ¢ (or, if ¢ died, the time of
death) and (4) the party fitness. The fitness F for character ¢
(who is a member of party p) is formally defined as:

0 {ne pah(n)<0}

0.5+o.5:h’(’n) fne pahln)>0}
Flp.e) = 0'05; 1 {ne pahn)<o}
(

0.5—0.5’:}&’3) fne pAhn)>0}

min(de()100) g5 < o1

+ 1000h(c) + 03F(p)
02+0.1—% {n(c)> 0}
mh(c)
where 7 is any of the characters in the encounter (for a total
of eight characters), dc(c) is the timer count at the time of
death of character ¢ and the other functions are as in the
party fitness calculation. The fitness function for individual
characters assigns a large reward to a victory of its party
(even if the individual itself did not survive), a smaller
reward to the individual’s own survival, and an even smaller
reward to the survival of its comrade party members and the

damage they inflicted to the opposing party. As such the
character fitness function is a good measure of the success
rate of the script that controls the character.

The weight-update function translates the character fitness
into weight adaptations for the rules in the script. Only the
rules in the script that are actually executed during an
encounter were rewarded or penalised. The weight-update
function is formally defined as follows:

b, max[O, W,, —MP- b_Fb(p’C)) {F(p,c)<b}

min(Wm‘g + MR»F(‘T’_C[))_b,MW) {F(p,c)zb}
where W is the new weight value, W, is the original weight
value, MP is the maximum penalty, MR is the maximum
reward, MW is the maximum weight value, and b is the
break-even point. In our simulation we set MP to 30, MR to
100, MW to 2000 and b to 0.3. At the break-even point,
weights remain unchanged. To keep the sum of all weight
values in a rulebase constant, weight changes are executed
through a redistribution of all weights in the rulebase. The
weights in the rulebase were initialised with a value of 100.

4.4 The Experiments

The experiments aim at assessing the adaptive performance

of an opponent party controlled by the dynamic scripting

technique, against a player party controlled by static scripts.

We defined four different basic tactics and three composite

tactics for the player party. The four basic tactics,

implemented as a static script for each party member, are as
follows.

1. Offensive: The fighters always attack the nearest enemy
with a melee weapon, while the wizards use the nastiest
damaging spells at the most susceptible enemies.

2. Disabling: The fighters start by drinking a potion that
frees them of any disabling effect, then attack the
nearest enemy with a melee weapon. The wizards use all
kinds of spells that disable enemies for a few rounds.

3. Cursing: The fighters always attack the nearest enemy
with a melee weapon, while the wizards use all kinds of
spells that harm enemies in some way. They try to
charm enemies, physically weaken enemy fighters,
deafen enemy wizards, summon minions in the middle
of the enemy party, etc.

4. Defensive: The fighters start by drinking a potion that
reduces fire damage, after which they attack the closest
enemy with a melee weapon. The wizards use all kinds
of defensive spells, to deflect harm from themselves and
from their comrades, including the summoning of
minions.

To assess the ability of the dynamic scripting technique to

cope with sudden changes in tactics, we defined the

following three composite tactics.

5. Random party tactic: Each encounter one of the four
basic tactics is selected randomly.

6. Random character tactic: Each encounter each
opponent randomly selects one of the four basic tactics,
independent from the choices of his comrades.

7. Consecutive party tactic: The party starts by using one
of the four basic tactics. Each encounter the party will
continue to use the tactic used during the previous

it

A nm unnnnERERN
&k <

4 e T T s —
L

A I | | HinEiEn _Hnl &
Py 25

AN R m s
Figure 4: Two charts comparing the fitness values of two parties during a
sequence of encounters. In each chart the top graph represents the
opponent party, which uses the dynamic scripting technique, and the
bottom graph the player party. The upper chart shows the average fitness
over the last 10 encounters for both parties. In this example, from
encounter 29 on, the opponent party outperforms the player party, so the

average turning point is 29. The lower chart shows the absolute fitness
for the two parties. This chart shows an absolute turning point of 25.

encounter if that encounter was won, but will switch to
the next tactic if that encounter was lost. This strategy is
closest to what human players do: they stick with a
tactic as long as it works, and switch when it fails.

To quantify the relative performance of the opponent party
against the player party, after each encounter we calculate
the average fitness for each of the parties over the last ten
encounters. The opponent party is said to outperform the
player party at an encounter if the average fitness over the
last ten encounters is higher for the opponent party than for
the player party.

In order to identify reliable changes in strength between
parties, we define two notions of the average turning point
and the absolute turning point (illustrated in figure 4). The
average turning point is the number of the first encounter
after which the opponent party outperforms the player party
for at least ten consecutive encounters. The absolute turning
point is defined as the first encounter after which a
consecutive run of encounters in which the opponent party
wins is never followed by a longer consecutive run in which
the opponent party loses. Low values for the average and
absolute turning points indicate good efficiency of dynamic
scripting, since they indicate that the opponent party (using
dynamic scripting) consistently outperforms the player party
within a few encounters only.

For each of the basic tactics we ran 21 tests, and for each
of the composite tactics we ran 11 tests. The results of these
experiments are presented in the next subsection.

4.5 Results

Table 2 presents the results of the experiments in the
simulated CRPG environment. The table lists, for each of the
tactics employed by the player party, the achievements by
the opponent party, which uses dynamic scripting, with
respect to the average and absolute turning points. We make
the following three observations.

First, the disabling tactic is easily defeated. Apparently the

Average Turning Point Absolute Turning Point

Tactic Low High Avg. Med. | Low High Avg. Med.
Offensive 27 164 57 54 27 159 53 45
Disabling 11 14 11 11 1 10 3 1
Cursing 13 1784 150 31 4 1778 144 31
Defensive 11 93 31 23 1 87 27 18
Random Party 13 256 56 29 5 251 50 26
Random Char. 11 263 53 30 1 249 47 33
Consecutive 11 160 61 50 3152 55 48

Table 2: Results of the experiments described in section 4. For each tactic
the lowest, highest, average and median average and absolute turning
points are shown.

disabling tactic is not a good tactic, because dealing with it
does not require adaptation of the rulebase.

Second, it is striking that for both turning points in most
cases the average is significantly higher than the median.
The explanation is the rare occurrence of extremely high
turning points. During early encounters chance can cause
potentially successful rules to get a low rating or
unsuccessful rules to get a high rating. As a result, the
rulebase diverges from a good weight distribution from
which it has trouble recovering. Our experiments contained
no mechanism to reduce the effect of early divergence, but it
is clear such a mechanism is needed to make dynamic
scripting a practically useful technique.

Third, the consecutive tactic, which in subsection 4.4 we
argued is closest to human player behaviour, is overall the
most difficult to defeat with dynamic scripting.
Nevertheless, our dynamic scripting technique is capable of
defeating this tactic rather quickly, especially considering
the fact that the rulebase started out with all weights being
equal, while in an actual game the weights would be biased
from the start to give the objectively better rules a higher
selection probability.

The results of our first series of experiments indicated that
dynamic scripting can successfully be applied as an
unsupervised online learning technique for commercial
computer games. To confirm that the results achieved in the
simulation are applicable to actual state-of-the-art CRPGs, in
a second experiment we implemented dynamic scripting in a
module for the CRPG NEVERWINTER NIGHTS. This
experiment is described in the next section.

5 EXPERIMENTS IN A COMMERCIAL GAME

This section describes the experiments used to test the
effectiveness of dynamic scripting in an actual commercial
CRPG. It describes the game selected for these experiments
and the problem situation to which dynamic scripting is
applied (5.1), the scripts and rulebases (5.2), the weight-
update function (5.3), the actual experiments (5.4) and the
achieved results (5.5).

5.1 Commercial Game Situation

To test out dynamic scripting in practice we chose the game
NEVERWINTER NIGHTS (NWN; 2002), developed by
BioWare Corp. NWN is a popular, state-of-the-art CRPG.
One of the reasons for its popularity, and a major reason for
selecting this game for evaluating the dynamic scripting
technique, is that the game is easy to modify and extend. The
game comes with a toolset that allows the user to develop
completely new game modules and provides access to the
scripting language and all the scripted game resources,
including the opponent AI. While the scripting language is
not as powerful as modern programming languages, we
found it to be sufficiently powerful to implement dynamic
scripting.

We implemented a small module in NWN similar to the
simulated CRPG detailed in section 4. The module contains
an encounter between a player party and an opponent party
of similar composition. This is illustrated in figure 5. Each
party consists of a fighter, a rogue, a priest and a wizard of
equal experience level. In contrast to the opponents in the

Figure 5: A battle between two parties in NEVERWINTER NIGHTS.

simulated CRPG the inventory and spell selections in the
NWN module can not be changed. Hence, the opponent
party in the NWN module is more constrained than the
opponent party in the simulation.

5.2 Scripts and Rulebases

The basic opponent Al in NWN is very general in order to
facilitate the development of new game modules. It
distinguishes between about a dozen opponent types and for
each opponent type it sequentially checks a number of
environmental variables and attempts to generate an
appropriate response. The behaviour generated by NWN’s
Al is not completely predictable because the checking
sequence and the selection of the responses is partly
probabilistic.

For the implementation of the dynamic scripting process,
we first extracted the rules employed by the basic opponent
Al and entered them in every appropriate rulebase. To these
standard NWN rules we added three types of new rules.
First, we added rules that are similar to the standard rules,
but slightly more specific. For instance, when a rule’s action
would be “attack closest enemy” we might change that to
“attack closest enemy wizard”. Second, we added a small
number of rules that fire only in very specific circumstances,
e.g., when the enemy is first spotted. Third, we added a few
empty rules. Selection of the empty rules allows the
opponent Al to decrease the number of effective rules.

In the generation of scripts a priority mechanism was used
to order the rules. Priorities were set according to their
specificity. The most specific rules had the highest priority,
and the most general rules the lowest priority. Within a
priority group, the rules with the largest weights were
assigned the highest priority.

The size of the scripts for both a fighter and a rogue were
set to five rules, which were selected out of rulebases
containing 21 rules. The size of the scripts for both a priest
and a wizard were set to ten rules, the rulebase for the priest
containing 53 rules and the rulebase for the wizard
containing 49 rules. To the end of each script a call to the
basic NWN opponent Al was added, that is, if no rule could
be executed the basic opponent Al would determine the
actions.

5.3 The Weight-update Function

The weight adaptation mechanism we used in the NWN
module made use of a party fitness function and a separate
fitness function for each character, just as in the simulated
CRPG (see subsection 4.3). Since the precise

implementation of these functions is not critical for the
dynamic scripting technique, we decided to differ slightly
from the implementation of these functions in the simulation,
mainly to avoid problems with the NWN scripting language
and to allow varying party sizes.

The fitness of the party is a value in the range [0,1], which
is based on three factors, namely (1) whether the party has
won the fight, (2) the number of party members surviving,
and (3) the remaining health of the surviving party members.
The fitness F for the party p is formally defined as:

0 {Vne p|h(n)<0}

h(n)
F(p)= . count(n € p|h(n)> 0)+ ; mh(n)

{Bne p|h(n)> 0}

count(ne p)

where count is a function that counts the number of
instances of its parameter, mh(n) is a function that returns
the health of character n at the start of the encounter (as a
natural number that is greater than zero) and h(n) is a
function that returns the health of character n at the end of
the encounter (as a natural number between zero and m#h(n)).

The fitness of a character is a value in the range [0,1], that
is based on three factors, namely (1) whether the character
survived or not, (2) the remaining health of the character (or,
if the character died, the time of death), (3) the party fitness.
The fitness F for character ¢ (who is a member of party p) is
formally defined as:

min(de(c)30) Th(c)< 0}
F(p,c): 100 h(c)
03+02—2 {n(c)>0}
mh(c)
where dc(c) is the timer count at the time of death of
character ¢ and the other functions are as in the party fitness
calculation. The fitness function for individual characters
assigns a large reward to a victory of their party (even if the
individual itself did not survive), a smaller reward to the
individual’s own survival and an even smaller reward to the
size of the remaining health.

The weight-update function in the NWN module was equal
to the weight-update function of the simulation, as defined in
subsection 4.3, except that the maximum penalty MP was set
to 50. Furthermore, rules in the script that were not executed
during the encounter, instead of being treated as not being in
the script at all, we assigned half the reward or penalty
received by the rules that were executed. The main reason
for this is that if there were no rewards and penalties for the
non-executed rules, the empty rules would never get rewards
or penalties.

+ 0.5F(p)

5.4 The Experiments

Since the simulation experiments already showed that
dynamic scripting is an efficient technique, the NWN
experiments were mainly aimed at evaluating whether
dynamic scripting works as well in a practical situation as in
the simulation. We used the same notions of average turning
point and absolute turning point (see subsection 4.4) to
evaluate the performance of the dynamic scripting technique
in these experiments.

While in the simulation experiments the learning opponent
party was pitted against several manually programmed

strategies employed by the player party, in the NWN
experiments we pitted the learning party against the basic
NWN opponent Al. The behaviour of the basic opponent Al
is somewhat unpredictable and tries to adapt to the
circumstances of an encounter. We observed that a party
using the basic Al outperforms an unadapted opponent (i.c.
an adaptive opponent that has all weights in the rulebase set
to the same value).

We ran eleven tests, starting with newly initialised
rulebases for each of the characters. Each test continued
until the average turning point was reached. The results of
the tests are presented in the next subsection.

5.5 Results

The results of the NWN experiments are presented in table
3. The table shows that the results achieved in these
experiments are similar to the results achieved in the
simulation experiments. Apparently, dynamic scripting can
be successfully applied in a state-of-the-art CRPG.

Average Turning Point Absolute Turning Point
Tactic Low High Avg. Med. | Low High Avg. Med.
Basic Al 10 101 34 27 6 96 33 29

Table 3: Results of the experiments described in section 5. There is
only one opponent tactic, namely the basic Al as implemented by the
NWN developers. The lowest, highest, average and median average
and absolute turning points are shown.

6 DISCUSSION

Our experimental results show that dynamic scripting is
capable of adapting rapidly to static or changing tactics.
Hence, dynamic scripting is efficient and meets the four
requirements stated in section 3 (fast, effective, robust and
efficient). The results achieved with the NWN experiments
detailed in section 5 clearly show that the implementation is
commercially feasible, although some improvements are
needed. In this section we discuss the following issues:
improving dynamic scripting (6.1), offline dynamic scripting
(6.2), generalisation within a game (6.3) and to other games
(6.4), and the point-of-view of game developers (6.5).

6.1 Improving Dynamic Scripting

The results of the experiments, presented in subsections 4.5
and 5.5, show that in some exceptional cases the adaptation
process of the rulebases can become excessively long. We
examined some of the rulebases that were generated in these
cases, and found them to contain high weight values for
rules that represent undesirable behaviour. Such behaviour,
once learned (supposedly through chance), evidently can be
difficult to unlearn. A straightforward solution is to store
successful copies of the rulebase and to revert to an earlier
rulebase when the performance seems to deteriorate.

We noted that if we let our experiments continue even
after an average turning point was discovered, it sometimes
happened after a while that the rulebase started to generate
inferior scripts. This is because the rulebase continues to
learn new behaviour, even when it is already successful.
Simply stopping the learning process when it has reached an
optimum is not a good solution, because our goal is to let the
rulebase adapt to changing player tactics. A better solution is

to develop a mechanism that protects the rulebase from
degrading, such as the previously suggested storing of
copies of successful rulebases.

6.2 Offline Dynamic Scripting

In our online learning experiments we only adapt weight
values, rather than changing existing rules or adding new
rules. In our view, such techniques would severely reduce
the efficiency of the process and might interfere with the
effectiveness of the generated scripts. However, during an
offline training phase, which optimises the rulebase before a
game is released, such techniques are certainly possible and
can even be successful (Spronck ef al. 2003).

6.3 Generalisation within a Game

Our experiments were limited to optimising the opponent Al
in one specific encounter. In practice, games usually
challenge the player with many different encounters, rather
than with one specific encounter that is repeated over and
over again. Especially in strategic CRPGs, such as
BALDUR’S GATE and NEVERWINTER NIGHTS, different
instances of an opponent type will have different
characteristics, different spells and different equipment. Is it
possible to use dynamic scripting to optimise a rulebase for
an opponent type in these ever changing circumstances? We
argue that it is, provided the rules in the rulebase are
generalised. For instance, rules should not refer to the
casting of specific spells, but instead to the casting of spells
of a certain type (e.g., instead of stating “cast a fireball” a
rule should state “cast a high-level damaging area-effect
spell”). While, for instance, each opponent wizard in the
game might be different, successful generalised tactics for
one wizard will also work for most other wizards. Therefore,
with generalised rules any wizard encounter can be used to
update weights for the wizard opponent type. Our argument
is supported by the fact that the basic opponent Al in NWN
employs such generalised rules to ensure that the Al can
adequately control any opponent instance that can be
created.

6.4 Generalisation to Other Games

Although dynamic scripting turns out to be surprisingly
efficient and effective for implementing online learning in
some commercial games, the question remains whether it
can be made sufficiently efficient for application in every
type of commercial game. For action games the answer
would be an unequivocal yes, because action games
typically pit the player against hundreds of copies of one
particular opponent instance. For strategic games where
there is much variety in opponents it depends on how many
different opponent types can be distinguished and how many
instances of an opponent type can be found in the game. For
practical purposes game designers will usually place only a
limited number of different opponent types in a game, and
many instances of each type, each slightly different from the
rest. Most games, therefore, will contain enough encounters
with each opponent type to optimise the associated dynamic
scripting rulebase. If the weights in the rulebase do not all
start at equal values, but are biased to give the objectively
better rules a greater selection probability (for instance

through an offline training process), the adaptation process
will need even less trials than in our experiments, while the
ability to adapt to novel tactics is preserved.

6.5 The Point-of-view of Game Developers

To the four requirements we defined for online learning
(fast, effective, robust and efficient) commercial game
developers would add two extra ones, namely that (5) the
resulting Al should be understandable (which will make it
easier for them to place their trust in it), and (6) the resulting
Al should be non-repetitive (so it will not be too predictable,
which detracts from the entertainment value). We argue that
dynamic scripting meets these two additional requirements
as well. First, dynamic scripting generates scripts, and
therefore the results are understandable by definition.
Second, scripts are always generated at random for each new
encounter and thus the Al is non-repetitive. The differences
between scripts will be greater if the maximum weight
values are set low enough so that a considerable number of
rules will end up with large enough weights to be selected
often.

Commercial game developers would, however, not agree
to have opponents attempt to learn to defeat the human
player at all costs, which is what our fitness criterion, that
relies heavily on winning and losing encounters, actually
promotes. In commercial games, the human player should
(because of entertainment purposes) and will (because of
saving and reloading functionalities) always win an
encounter. Therefore, in an actual commercial game fitness
should rely more on the amount of damage done and the
length of the fights. It might even be useful to punish a
rulebase for winning a fight or damaging the player party too
much, so that the entertainment value of the game for
weaker players is protected.

Finally, it should be noted that if online learning is
implemented in a game, the game will learn different things
from different players and therefore different players will
have a different playing experience. Publishers will insist
that the Quality Assurance team will cover these different
playing experiences while testing the game, which will
obviously make the team’s task harder. This issue should be
addressed in the design phase of a game, when the decision
to use an online learning technique is made.

7 CONCLUSIONS AND FUTURE WORK

In this paper we proposed dynamic scripting as a technique
to deal with unsupervised online adaptation of opponent Al,
suitable for implementation in complex commercial
computer games such as CRPGs. Dynamic scripting is based
on the automatic online generation of Al scripts for
computer game opponents by means of an adaptive rulebase.
From our experimental results, we conclude that dynamic
scripting is fast, effective, robust, and efficient and therefore
has the potential to be successfully incorporated in
commercial games. We tested the technique in a module for
a state-of-the-art commercial CRPG, BioWare’s
NEVERWINTER NIGHTS, which showed that the technique
works as well in practice as it does in the simulation.
However, some changes are needed before the technique is
ready to be implemented in actual commercial games.

Specifically, the algorithm should be augmented with a
technique that protects the adaptation mechanism against
learning ineffective behaviour by chance and then having
difficulty to unlearn this inferior behaviour.

Our future work aims at optimising the dynamic scripting
technique to make commercial implementation viable. In
particular, we focus on tweaking the learning parameters,
seeking ways to store successful rulebases to recover from
inferior performance, studying methods to optimise the
ranking of rules in the scripts, and experimenting with
offline learning to optimise a rulebase before online learning
takes place. Furthermore, since our main aim is to use online
learning against human players, it is essential that we extend
our experiments to assess if online learning actually
increases the entertainment value of a game for human
players. After all, for commercial game developers
entertainment value is of primary concern when deciding
whether or not to incorporate online learning in their games.

REFERENCES

Brockington, M. and M. Darrah. 2002. “How Not to Implement a
Basic Scripting Language.” 41 Game Programming Wisdom
(ed. S. Rabin). Charles River Media, pp. 548-554.

Cook, M., J. Tweet and S. Williams. 2000. Dungeons & Dragons
Player’s Handbook. Wizards of the Coast.

Demasi, P. and A.J. de O. Cruz. 2002. “Online Coevolution for
Action Games.” International Journal of Intelligent Games and
Simulation (eds. N.E. Gough and Q.H. Mehdi), Vol. 2, No. 2.
University of Wolverhampton and EUROSIS , pp. 80-88.

Demasi, P. and AJ. de O. Cruz. 2003. “Anticipating Opponent
Behaviour Using Sequential Prediction and Real-Time Fuzzy
Rule Learning.” Proceedings of the 4th International
Conference on Intelligent Games and Simulation (GAME-ON
2003) (eds. Q. Mehdi, N. Gough and S. Natkin). EUROSIS,
Belgium, pp. 101-105.

Evans, R. 2002. “Varieties of Learning.” Al Game Programming
Wisdom (ed. S. Rabin). Charles River Media, pp. 567-578.

Laird, J.E. 2001. “It Knows What You’re Going To Do: Adding
Anticipation to a Quakebot.” Proceedings of the Fifth
International Conference on Autonomous Agents, pp. 385-392.

Manslow, J. 2002. “Learning and Adaptation.” Al Game
Programming Wisdom (ed. S. Rabin). Charles River Media, pp.
557-566.

Michalewicz, Z. and D.B. Fogel. 2000. How To Solve It: Modern
Heuristics. Springer Verlag, 2000.

Russell, S. and P. Norvig. 2002. Artificial Intelligence: A Modern
Approach, Second Edition. Prentice Hall, Englewood Cliffs,
New Jersey.

Schaeffer, J. 2001. “A Gamut of Games.” Al Magazine, Vol. 22
No. 3, pp. 29-46.

Scott, B. 2002. “The Illusion of Intelligence.” Al Game
Programming Wisdom (ed. S. Rabin). Charles River Media, pp.
16-20.

Spronck, P., 1. Sprinkhuizen-Kuyper and E. Postma. 2002.
“Improving Opponent Intelligence Through Offline
Evolutionary Learning.” International Journal of Intelligent
Games and Simulation (eds. N.E. Gough and Q.H. Mehdi),
Vol. 2, No. 1. University of Wolverhampton and EUROSIS, pp.
20-27.

Tomlinson, S.L., A. Davies and S. Assadourian. 2003. “Working at
Thinking About Playing or A Year in the Life of a Games Al
Programmer.” Proceedings of the 4th International Conference
on Intelligent Games and Simulation (GAME-ON 2003) (eds.
Q. Mehdi, N. Gough and S. Natkin). EUROSIS, Belgium, pp.
5-11.

Tozour, P. 2002a. “The Evolution of Game AL” Al Game
Programming Wisdom (ed. S. Rabin). Charles River Media, pp.
3-15.

Tozour, P. 2002b. “The Perils of Al Scripting.” Al Game
Programming Wisdom (ed. S. Rabin). Charles River Media, pp.
541-547.

Woodcock, S. 2000. “Game Al: The State of the Industry.” Game
Developer Magazine, August 2000.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to the University
of Alberta GAMES Group and the Netherlands Organization
for Scientific Research (NWO) for their support of this
research, and to BioWare Corp. for their enlightening
commentary.

