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ABSTRACT 

Unsupervised online learning in commercial computer 
games allows computer-controlled opponents to adapt to the 
way the game is being played, thereby providing a 
mechanism to deal with weaknesses in the game AI and to 
respond to changes in human player tactics. For online 
learning to work in practice, it must be fast, effective, robust, 
and efficient. This paper proposes a novel technique called 
“dynamic scripting” that meets these requirements. In 
dynamic scripting an adaptive rulebase is used for the 
generation of intelligent opponents on the fly. The 
performance of dynamic scripting is evaluated in an 
experiment in which the adaptive players are pitted against a 
collective of manually designed tactics in a simulated 
computer roleplaying game and in a module for the state-of-
the-art commercial game NEVERWINTER NIGHTS. The results 
indicate that dynamic scripting succeeds in endowing 
computer-controlled opponents with successful adaptive 
performance. We therefore conclude that dynamic scripting 
can be successfully applied to the online adaptation of 
computer game opponent AI. 

1   INTRODUCTION 

The quality of commercial computer games is directly 
related to their entertainment value (Tozour 2002a). The 
general dissatisfaction of game players with the current level 
of artificial intelligence for controlling opponents (so-called 
“opponent AI”) makes them prefer human-controlled 
opponents (Schaeffer 2001). Improving the quality of 
opponent AI (while preserving the characteristics associated 
with high entertainment value (Scott 2002)) is desired in 
case human-controlled opponents are not available. 
   In recent years some research has been performed to 
endow relatively simple games, such as the action game 
QUAKE, with advanced opponent AI (Laird 2001). However, 
for more complex games, such as Computer RolePlaying 
Games (CRPGs), where the number of choices at each turn 
ranges from hundreds to even thousands, the incorporation 
of advanced AI is much more difficult. For these complex 
games most AI researchers resort to scripts, i.e. lists of rules 
that are executed sequentially (Tozour 2002b). These scripts 
are generally static and tend to be quite long and complex 
(Brockington and Darrah 2002). This leads to two major 
problems, namely the problem of complexity and the 
problem of adaptability. 
   The problem of complexity entails that because of their 
complexity, AI scripts are likely to contain weaknesses, 

which can be exploited by human players to easily defeat 
supposedly tough opponents. The problem of adaptability 
entails that because they are static, scripts cannot deal with 
unforeseen tactics employed by the human player and cannot 
scale the difficulty level exhibited by the game AI to cater to 
both novice and experienced human players. These two 
problems, which are common for the opponent AI of modern 
CRPGs (Spronck et al. 2003), hamper the entertainment 
value of commercial computer games. 
   There are two ways to apply machine learning techniques 
to improve the quality of scripted opponent AI. The first way 
is to employ offline learning prior to the release of a game to 
deal with the problem of complexity (Spronck et al. 2003). 
The second way is to apply online learning after the game 
has been released to deal with both the problem of 
complexity and the problem of adaptability. Online learning 
allows the opponents to automatically repair weaknesses in 
their scripts that are exploited by the human player, and to 
adapt to changes in human player tactics and playing style. 
While supervised online learning has been sporadically used 
in commercial games (Evans 2002), unsupervised online 
learning is widely disregarded by commercial game 
developers (Woodcock 2000), even though it has been 
shown to be feasible for simple games (Demasi and Cruz 
2002, 2003). The present study shows that unsupervised 
online learning is of great potential for improving the 
entertainment value of commercial computer games. 
   Our research question reads: How can unsupervised online 
learning be incorporated in commercial computer games to 
improve the quality of the opponent AI? We propose a novel 
technique called dynamic scripting that realises online 
adaptation of scripted opponent AI and report on 
experiments performed in both a simulated and an actual 
commercial CRPG to assess the adaptive performance 
obtained with the technique. 
   The outline of the remainder of the paper is as follows. 
Section 2 discusses opponent AI in CRPGs. Section 3 
describes online learning of computer game AI and the 
dynamic scripting technique. The experiments performed for 
evaluating the adaptive performance of dynamic scripting 
are described in section 4 and 5. In section 4 dynamic 
scripting is used in a simulated CRPG. In section 5 it is 
applied in a module for the state-of-the-art CRPG 
NEVERWINTER NIGHTS. Section 6 discusses the results 
achieved with dynamic scripting. Section 7 concludes and 
points at future work. 

2   OPPONENT INTELLIGENCE IN CRPGS 

In Computer RolePlaying Games (CRPGs) the human player 
is situated in a virtual world represented by a single 
character or a party of characters. Each character is of a 
specific type (e.g., a fighter or a wizard) and has certain 



 

characteristics (e.g., weak but smart). In most CRPGs, the 
human player goes on a quest, which involves conversing 
with the world’s inhabitants, solving puzzles, discovering 
secrets, and defeating opponents in combat. During the quest 
the human-controlled characters gather experience, thereby 
gaining more and better abilities, such as advanced spell-
casting powers. Some examples of modern CRPGs are 
BALDUR’S GATE, NEVERWINTER NIGHTS and MORROWIND. 
   While combat in action games generally relies mainly on 
fast reflexes of the human player, combat in a CRPG usually 
relies on complex, strategic reasoning. The complexity arises 
from the fact that in each combat round both the human 
player and the computer-controlled opponents have a 
plethora of choices at their disposal. For instance, characters 
can execute short or long range attacks with different kinds 
of weapons, they can drink various potions, and they can 
cast a wide range of magic spells. The probabilistic nature of 
the results of these actions adds to the complexity of the 
combat process. 
   Opponent AI in CRPGs is almost exclusively based on 
scripts. Scripts are the technique of choice in the game 
industry to implement opponent AI in CRPGs, because they 
are understandable, predictable, adaptable to specific 
circumstances, easy to implement, easily extendable, and 
useable by non-programmers (Tozour 2002b, Tomlinson et 
al. 2003). Usually scripts are written and represented in a 
formal language that has special functions to test 
environmental conditions, to check a character’s status, and 
to express commands. During the game-development phase 
scripts are manually adapted to ensure that they exhibit the 
desired behaviour. After a game’s release the scripts and 
associated behaviours remain unchanged (unless they are 
updated in a game patch). 
   To deal with all possible choices and all possible 
consequences of actions the scripts controlling the opponents 
are of relatively high complexity. In contrast to classic 
CRPGs, such as the ULTIMA series, in modern CRPGs the 
human and opponent parties are often of similar composition 
(see figure 1 for an example), which entails that the 
opponent AI should be able to deal with the same kind of 
complexities as the human player faces. The challenge such 
an encounter offers can be highly enjoyable for human 
players. However, as already mentioned in the introduction, 
there are two major problems with application of complex, 
static scripts to implement opponent AI, namely the problem 
of complexity and the problem of adaptability. Unsupervised 

online learning has the potential to solve these problems. 
This is discussed in the following sections. 

3   ONLINE LEARNING OF GAME AI 

Unsupervised online learning of computer game AI entails 
that automatic learning techniques are applied that adapt the 
AI while the game is being played. In order for unsupervised 
online learning to be applicable in practice, it must meet four 
requirements, which are discussed in subsection 3.1. In 
subsection 3.2 we present dynamic scripting as an 
unsupervised online learning technique that meets these 
requirements. 

3.1  Requirements for Online Learning 

For unsupervised online learning of computer game AI to be 
applicable in practice, it must be fast, effective, robust, and 
efficient. Below we discuss each of these four requirements 
in detail. 
1. Fast. Since online learning takes place during 

gameplay, the learning algorithm should be 
computationally fast. This requirement excludes 
computationally intensive learning methods such as 
model-based learning. 

2. Effective. In providing entertainment for the player, the 
adapted scripts should be at least as challenging as 
manually designed ones (the occasional occurrence of a 
non-challenging opponent being permissible). This 
requirement excludes random learning methods, such as 
evolutionary algorithms. 

3. Robust. The learning mechanism must be able to cope 
with a significant amount of randomness inherent in 
most commercial gaming mechanisms. This requirement 
excludes deterministic learning methods that depend on 
a gradient search, such as straightforward hill-climbing. 

4. Efficient. In a single game, a player experiences a 
limited number of encounters with similar groups of 
opponents. Therefore, the learning process should rely 
on just a small number of trials. This requirement 
excludes slow-learning techniques, such as neural 
networks, evolutionary algorithms and reinforcement 
learning. 

   To meet these four requirements, we need a learning 
algorithm of high performance. The two main factors of 
importance when attempting to achieve high performance 
for a learning mechanism are the exclusion of randomness 
and the addition of domain-specific knowledge 
(Michalewicz and Fogel 2000). Since randomness is 
inherent in commercial computer games it cannot be 
excluded, so in this case it is imperative that the learning 
process is based on domain-specific knowledge. 

3.2  Dynamic Scripting 

Dynamic scripting is an unsupervised online learning 
technique for commercial computer games. It maintains 
several rulebases, one for each opponent type in the game. 
These rulebases are used to create new scripts that control 
opponent behaviour every time a new opponent is generated. 
The rules that comprise a script that controls a particular 
opponent are extracted from the rulebase corresponding to 
the opponent type. The probability that a rule is selected for 

 

Figure 1: An encounter between two parties in BALDUR’S GATE. 



 

a script is influenced by a weight value that is associated 
with each rule. The rulebase adapts by changing the weight 
values to reflect the success or failure rate of the 
corresponding rules in scripts. The size of the weight 
changes is determined by a weight-update function. 
   The dynamic scripting process is illustrated in figure 2 in 
the context of a commercial game. The rulebase associated 
with each opponent contains manually designed rules that 
use domain-specific knowledge. At the start of an encounter, 
a new script is generated for each opponent by randomly 
selecting a specific number of rules from its associated 
rulebase. There is a linear relationship between the 
probability a rule is selected and its associated weight. The 
order in which the rules are placed in the script depends on 
the application domain. A priority mechanism can be used to 
let certain rules take precedence over other rules. 
   The learning mechanism in our dynamic scripting 
technique is inspired by reinforcement learning techniques 
(Russell and Norvig 2002). It has been adapted for use in 
games because regular reinforcement learning techniques do 
not meet the requirement of efficiency (Manslow 2002). In 
the dynamic scripting approach, learning proceeds as 
follows. Upon completion of an encounter, the weights of 
the rules employed during the encounter are adapted 
depending on their contribution to the outcome. Rules that 
lead to success are rewarded with a weight increase, whereas 
rules that lead to failure are punished with a weight decrease. 
The remaining rules get updated so that the total of all 
weights in the rulebase remains unchanged. 
   The dynamic scripting technique meets at least three of the 
four requirements listed in 3.1. First, it is computationally 
fast, because it only requires the extraction of rules from a 
rulebase and the updating of weights once per encounter. 
Second, it is effective, because all rules in the rulebase are 
based on domain knowledge (although they may be 
inappropriate for certain situations). Third, it is robust 
because rules are not removed immediately when punished. 
   The dynamic scripting technique is believed to meet the 
fourth requirement of efficiency because with appropriate 
weight-updating parameters it can adapt after a few 
encounters only. To determine whether the belief is 

warranted, we performed two experiments with dynamic 
scripting. The first of these experiments, described in section 
4, tested the efficiency of dynamic scripting in a simulated 
CRPG situation. The second experiment, described in 
section 5, tested dynamic scripting in an actual state-of-the-
art CRPG to confirm that the achieved results can be 
repeated in practice. 

4   SIMULATION EXPERIMENTS 

This section describes the experiments used to test the 
efficiency of dynamic scripting in a simulated CRPG. It 
describes the problem situation to which dynamic scripting 
is applied (4.1), the scripts and rulebases (4.2), the weight-
update function (4.3), the actual experiments (4.4) and the 
achieved results (4.5). 

4.1  The CRPG Simulation 

The gameplay mechanism in our CRPG simulation, 
illustrated in figure 3, was designed to resemble the popular 
BALDUR’S GATE games (see figure 1). These games (along 
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Figure 2: The dynamic scripting process. For each computer-controlled opponent a rulebase generates a new script at the start of an
encounter. After an encounter is over, the weights in the rulebase are adapted to reflect the results of the fight. 

 

Figure 3: A screenshot of the testing environment. To the left is the
combat area, the upper right shows the status of all characters in the
encounter, and to the lower right a report is shown of the current effects. 



 

with a few others) contain the most complex and extensive 
gameplay system found in modern CRPGs, closely 
resembling classic non-computer roleplaying games (Cook 
et al. 2000). Our simulation entails an encounter between 
player and opponent parties of similar composition. Each 
party consists of two fighters and two wizards of equal 
experience level. The armament and weaponry of the party is 
static; each character is allowed to select two (out of three 
possible) magic potions; and the wizards are allowed to 
memorise seven (out of 21 possible) spells. The spells 
incorporated in the simulation are of varying types, amongst 
which damaging spells, blessings, curses, charms, area-effect 
spells and summoning spells. Table 1 lists seven spell 
examples. 
   Instead of having the choices of spells and potions for 
opponents adapt in a separate process, we made them 
depend on the (generated) scripts as follows. Before the 
encounter starts the script is scanned to find rules containing 
actions that refer to drinking potions or casting spells. When 
such a rule is found, a potion or spell that can be used in that 
action is selected. If the character controlled by the script is 
allowed to possess the potion or spell, it is added to the 
character’s inventory. 

4.2  Scripts and Rulebases 

The scripting language is designed to enable the expression 
of rules composed of an optional conditional statement and a 
single action. The conditional statement consists of one or 
more conditions combined with logical ANDs and ORs. 
Conditions can refer to a variety of environmental variables, 
such as the distances separating characters, the characters’ 
health, and the spells that are suffered or benefited from. 
There are five basic actions: (1) attacking an enemy, (2) 
drinking a potion, (3) casting a spell, (4) moving, and (5) 
passing. In the scripting language, spells, potions, locations 
and characters can be referenced specifically (e.g., “cast 
spell ‘magic missile’ at closest enemy wizard”), generally 
(e.g., “cast any offensive spell at a random enemy”) or 
somewhere in-between (e.g., “cast the strongest damaging 
spell available at the weakest enemy”). Rules in the scripts 
are executed in sequential order. For each rule the condition 
(if present) is checked. If the condition is fulfilled (or 
absent), the action is executed if it is both possible and 
useful in the situation at hand. If no action is selected when 

the final rule is checked, the default action ‘pass’ is used. 
   In dynamic scripting rules for a script are selected with a 
probability determined by the rule weights. To determine the 
rule order in the CRPG simulation we have assigned each 
rule a priority value, whereby rules with a higher priority 
take precedence over rules with a lower priority. For rules 
with equal priority we let the rules with higher weights take 
precedence. If two rules have both equal priorities and equal 
weights, their order is determined randomly. 
   The size of the script for a fighter was set to five rules, 
which were selected out of a rulebase containing 20 rules. 
For a wizard, the script size was set to ten rules, which were 
selected out of a rulebase containing 50 rules. To the end of 
each script one or two default rules were added to ensure the 
execution of an action in case none of the rules from the 
rulebase could be activated. 

4.3  The Weight-update Function 

The weight-update function is based on two so-called 
“fitness functions”: a fitness function for the party as a 
whole, and a fitness function for each individual character. 
   The fitness of a party is a value in the range [0,1], which is 
zero if the party has lost the fight, and 0.5 plus half the 
average remaining health of all party members if the party 
has won the fight. The fitness F for the party p (consisting of 
four party members) is formally defined as: 
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where mh(n) is a function that returns the health of character 
n at the start of the encounter (as a natural number that is 
greater than zero) and h(n) is a function that returns the 
health of character n at the end of the encounter (as a natural 
number between zero and mh(n)). 
   The fitness of a character c is a value in the range [0,1], 
that is based on four factors, namely (1) the average 
remaining health of all party members (including character 
c), (2) the average damage done to the opposing party, (3) 
the remaining health of character c (or, if c died, the time of 
death) and (4) the party fitness. The fitness F for character c 
(who is a member of party p) is formally defined as: 
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where n is any of the characters in the encounter (for a total 
of eight characters), dc(c) is the timer count at the time of 
death of character c and the other functions are as in the 
party fitness calculation. The fitness function for individual 
characters assigns a large reward to a victory of its party 
(even if the individual itself did not survive), a smaller 
reward to the individual’s own survival, and an even smaller 
reward to the survival of its comrade party members and the 

 
Magic Missile creates missiles of magical energy that unerringly strike a target creature. 
Each missile inflicts 1 to 5 points of damage. Starting with one missile at level 1, the wizard 
gains an additional missile every two levels, up to five missiles at level 9. 

 
Charm Person affects a single humanoid, who receives a saving throw vs. spells to avoid 
the effect. A charmed individual fights for the caster’s party. The spell is broken after 5 
combat rounds, when an ally tries to harm the target, or through  a second charm spell. 

 
Mirror Image creates one duplicate of the caster for each caster level up to nine duplicates 
at level 9. Each duplicate absorbs the damage of one attack against the wizard, after which it 
disappears. The duplicates last a maximum of 3 rounds for each caster level. 

 
Deafness affects a single target. If the target fails a saving throw vs. spells, he or she becomes 
totally deaf for the duration of one day. Deafened spellcasters have a 50% chance to miscast 
any spell. The only cure is a Dispel Magic cast onto the target.  

 
Stinking Cloud creates a cloud of nauseous vapours with a radius of 20 feet around a target 
location. Any creature caught within the cloud must, each round, save vs. poison or be 
unable to move or act for 1 to 5 rounds. The cloud remains one round for each caster level. 

 
Fireball generates an explosion of flames that does 1 to 6 points of fire damage for every 
level of the caster (up to level 10) to any creature caught in the blast. Affected creatures 
receive a saving throw vs. spells for half damage. 

 
Monster Summoning I conjures 1 to 3 level 3 woodland animals which fight under the 
command of the caster's party. The animals remain until they are slain or the spell expires, 
which happens after 3 rounds plus 1 round per caster level. 

  Table 1: Seven spell examples. 



 

damage they inflicted to the opposing party. As such the 
character fitness function is a good measure of the success 
rate of the script that controls the character. 
   The weight-update function translates the character fitness 
into weight adaptations for the rules in the script. Only the 
rules in the script that are actually executed during an 
encounter were rewarded or penalised. The weight-update 
function is formally defined as follows: 
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where W is the new weight value, Worg is the original weight 
value, MP is the maximum penalty, MR is the maximum 
reward, MW is the maximum weight value, and b is the 
break-even point. In our simulation we set MP to 30, MR to 
100, MW to 2000 and b to 0.3. At the break-even point, 
weights remain unchanged. To keep the sum of all weight 
values in a rulebase constant, weight changes are executed 
through a redistribution of all weights in the rulebase. The 
weights in the rulebase were initialised with a value of 100. 

4.4  The Experiments 

The experiments aim at assessing the adaptive performance 
of an opponent party controlled by the dynamic scripting 
technique, against a player party controlled by static scripts. 
We defined four different basic tactics and three composite 
tactics for the player party. The four basic tactics, 
implemented as a static script for each party member, are as 
follows. 
1. Offensive: The fighters always attack the nearest enemy 

with a melee weapon, while the wizards use the nastiest 
damaging spells at the most susceptible enemies. 

2. Disabling: The fighters start by drinking a potion that 
frees them of any disabling effect, then attack the 
nearest enemy with a melee weapon. The wizards use all 
kinds of spells that disable enemies for a few rounds. 

3. Cursing: The fighters always attack the nearest enemy 
with a melee weapon, while the wizards use all kinds of 
spells that harm enemies in some way. They try to 
charm enemies, physically weaken enemy fighters, 
deafen enemy wizards, summon minions in the middle 
of the enemy party, etc. 

4. Defensive: The fighters start by drinking a potion that 
reduces fire damage, after which they attack the closest 
enemy with a melee weapon. The wizards use all kinds 
of defensive spells, to deflect harm from themselves and 
from their comrades, including the summoning of 
minions. 

To assess the ability of the dynamic scripting technique to 
cope with sudden changes in tactics, we defined the 
following three composite tactics. 
5. Random party tactic: Each encounter one of the four 

basic tactics is selected randomly. 
6. Random character tactic: Each encounter each 

opponent randomly selects one of the four basic tactics, 
independent from the choices of his comrades. 

7. Consecutive party tactic: The party starts by using one 
of the four basic tactics. Each encounter the party will 
continue to use the tactic used during the previous 

encounter if that encounter was won, but will switch to 
the next tactic if that encounter was lost. This strategy is 
closest to what human players do: they stick with a 
tactic as long as it works, and switch when it fails. 

   To quantify the relative performance of the opponent party 
against the player party, after each encounter we calculate 
the average fitness for each of the parties over the last ten 
encounters. The opponent party is said to outperform the 
player party at an encounter if the average fitness over the 
last ten encounters is higher for the opponent party than for 
the player party. 
   In order to identify reliable changes in strength between 
parties, we define two notions of the average turning point 
and the absolute turning point (illustrated in figure 4). The 
average turning point is the number of the first encounter 
after which the opponent party outperforms the player party 
for at least ten consecutive encounters. The absolute turning 
point is defined as the first encounter after which a 
consecutive run of encounters in which the opponent party 
wins is never followed by a longer consecutive run in which 
the opponent party loses. Low values for the average and 
absolute turning points indicate good efficiency of dynamic 
scripting, since they indicate that the opponent party (using 
dynamic scripting) consistently outperforms the player party 
within a few encounters only. 
   For each of the basic tactics we ran 21 tests, and for each 
of the composite tactics we ran 11 tests. The results of these 
experiments are presented in the next subsection. 

4.5  Results 

Table 2 presents the results of the experiments in the 
simulated CRPG environment. The table lists, for each of the 
tactics employed by the player party, the achievements by 
the opponent party, which uses dynamic scripting, with 
respect to the average and absolute turning points. We make 
the following three observations. 
   First, the disabling tactic is easily defeated. Apparently the 

 Average Turning Point Absolute Turning Point 
Tactic Low High Avg. Med. Low High Avg. Med. 
Offensive 27 164 57 54 27 159 53 45 
Disabling 11 14 11 11 1 10 3 1 
Cursing 13 1784 150 31 4 1778 144 31 
Defensive 11 93 31 23 1 87 27 18 
Random Party 13 256 56 29 5 251 50 26 
Random Char. 11 263 53 30 1 249 47 33 
Consecutive 11 160 61 50 3 152 55 48 

Table 2: Results of the experiments described in section 4. For each tactic 
the lowest, highest, average and median average and absolute turning 
points are shown. 

 

Figure 4: Two charts comparing the fitness values of two parties during a
sequence of encounters.  In each chart the top graph represents the
opponent party, which uses the dynamic scripting technique, and the
bottom graph the player party. The upper chart shows the average fitness
over the last 10 encounters for both parties. In this example, from
encounter 29 on, the opponent party outperforms the player party, so the
average turning point is 29. The lower chart shows the absolute fitness
for the two parties. This chart shows an absolute turning point of 25. 

29 

25 



 

disabling tactic is not a good tactic, because dealing with it 
does not require adaptation of the rulebase. 
   Second, it is striking that for both turning points in most 
cases the average is significantly higher than the median. 
The explanation is the rare occurrence of extremely high 
turning points. During early encounters chance can cause 
potentially successful rules to get a low rating or 
unsuccessful rules to get a high rating. As a result, the 
rulebase diverges from a good weight distribution from 
which it has trouble recovering. Our experiments contained 
no mechanism to reduce the effect of early divergence, but it 
is clear such a mechanism is needed to make dynamic 
scripting a practically useful technique. 
   Third, the consecutive tactic, which in subsection 4.4 we 
argued is closest to human player behaviour, is overall the 
most difficult to defeat with dynamic scripting. 
Nevertheless, our dynamic scripting technique is capable of 
defeating this tactic rather quickly, especially considering 
the fact that the rulebase started out with all weights being 
equal, while in an actual game the weights would be biased 
from the start to give the objectively better rules a higher 
selection probability.  
   The results of our first series of experiments indicated that 
dynamic scripting can successfully be applied as an 
unsupervised online learning technique for commercial 
computer games. To confirm that the results achieved in the 
simulation are applicable to actual state-of-the-art CRPGs, in 
a second experiment we implemented dynamic scripting in a 
module for the CRPG NEVERWINTER NIGHTS. This 
experiment is described in the next section. 

5   EXPERIMENTS IN A COMMERCIAL GAME 

This section describes the experiments used to test the 
effectiveness of dynamic scripting in an actual commercial 
CRPG. It describes the game selected for these experiments 
and the problem situation to which dynamic scripting is 
applied (5.1), the scripts and rulebases (5.2), the weight-
update function (5.3), the actual experiments (5.4) and the 
achieved results (5.5). 

5.1  Commercial Game Situation 

To test out dynamic scripting in practice we chose the game 
NEVERWINTER NIGHTS (NWN; 2002), developed by 
BioWare Corp. NWN is a popular, state-of-the-art CRPG. 
One of the reasons for its popularity, and a major reason for 
selecting this game for evaluating the dynamic scripting 
technique, is that the game is easy to modify and extend. The 
game comes with a toolset that allows the user to develop 
completely new game modules and provides access to the 
scripting language and all the scripted game resources, 
including the opponent AI. While the scripting language is 
not as powerful as modern programming languages, we 
found it to be sufficiently powerful to implement dynamic 
scripting. 
   We implemented a small module in NWN similar to the 
simulated CRPG detailed in section 4. The module contains 
an encounter between a player party and an opponent party 
of similar composition. This is illustrated in figure 5. Each 
party consists of a fighter, a rogue, a priest and a wizard of 
equal experience level. In contrast to the opponents in the 

simulated CRPG the inventory and spell selections in the 
NWN module can not be changed. Hence, the opponent 
party in the NWN module is more constrained than the 
opponent party in the simulation. 

5.2  Scripts and Rulebases 

The basic opponent AI in NWN is very general in order to 
facilitate the development of new game modules. It 
distinguishes between about a dozen opponent types and for 
each opponent type it sequentially checks a number of 
environmental variables and attempts to generate an 
appropriate response. The behaviour generated by NWN’s 
AI is not completely predictable because the checking 
sequence and the selection of the responses is partly 
probabilistic. 
   For the implementation of the dynamic scripting process, 
we first extracted the rules employed by the basic opponent 
AI and entered them in every appropriate rulebase. To these 
standard NWN rules we added three types of new rules. 
First, we added rules that are similar to the standard rules, 
but slightly more specific. For instance, when a rule’s action 
would be “attack closest enemy” we might change that to 
“attack closest enemy wizard”. Second, we added a small 
number of rules that fire only in very specific circumstances, 
e.g., when the enemy is first spotted. Third, we added a few 
empty rules. Selection of the empty rules allows the 
opponent AI to decrease the number of effective rules. 
   In the generation of scripts a priority mechanism was used 
to order the rules. Priorities were set according to their 
specificity. The most specific rules had the highest priority, 
and the most general rules the lowest priority. Within a 
priority group, the rules with the largest weights were 
assigned the highest priority. 
   The size of the scripts for both a fighter and a rogue were 
set to five rules, which were selected out of rulebases 
containing 21 rules. The size of the scripts for both a priest 
and a wizard were set to ten rules, the rulebase for the priest 
containing 53 rules and the rulebase for the wizard 
containing 49 rules. To the end of each script a call to the 
basic NWN opponent AI was added, that is, if no rule could 
be executed the basic opponent AI would determine the 
actions. 

5.3  The Weight-update Function 

The weight adaptation mechanism we used in the NWN 
module made use of a party fitness function and a separate 
fitness function for each character, just as in the simulated 
CRPG (see subsection 4.3). Since the precise 

 

Figure 5: A battle between two parties in NEVERWINTER NIGHTS. 



 

implementation of these functions is not critical for the 
dynamic scripting technique, we decided to differ slightly 
from the implementation of these functions in the simulation, 
mainly to avoid problems with the NWN scripting language 
and to allow varying party sizes. 
   The fitness of the party is a value in the range [0,1], which 
is based on three factors, namely (1) whether the party has 
won the fight, (2) the number of party members surviving, 
and (3) the remaining health of the surviving party members. 
The fitness F for the party p is formally defined as: 
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where count is a function that counts the number of 
instances of its parameter, mh(n) is a function that returns 
the health of character n at the start of the encounter (as a 
natural number that is greater than zero) and h(n) is a 
function that returns the health of character n at the end of 
the encounter (as a natural number between zero and mh(n)). 
   The fitness of a character is a value in the range [0,1], that 
is based on three factors, namely (1) whether the character 
survived or not, (2) the remaining health of the character (or, 
if the character died, the time of death), (3) the party fitness. 
The fitness F for character c (who is a member of party p) is 
formally defined as: 
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where dc(c) is the timer count at the time of death of 
character c and the other functions are as in the party fitness 
calculation. The fitness function for individual characters 
assigns a large reward to a victory of their party (even if the 
individual itself did not survive), a smaller reward to the 
individual’s own survival and an even smaller reward to the 
size of the remaining health. 
   The weight-update function in the NWN module was equal 
to the weight-update function of the simulation, as defined in 
subsection 4.3, except that the maximum penalty MP was set 
to 50. Furthermore, rules in the script that were not executed 
during the encounter, instead of being treated as not being in 
the script at all, we assigned half the reward or penalty 
received by the rules that were executed. The main reason 
for this is that if there were no rewards and penalties for the 
non-executed rules, the empty rules would never get rewards 
or penalties. 

5.4  The Experiments 

Since the simulation experiments already showed that 
dynamic scripting is an efficient technique, the NWN 
experiments were mainly aimed at evaluating whether 
dynamic scripting works as well in a practical situation as in 
the simulation. We used the same notions of average turning 
point and absolute turning point (see subsection 4.4) to 
evaluate the performance of the dynamic scripting technique 
in these experiments. 
   While in the simulation experiments the learning opponent 
party was pitted against several manually programmed 

strategies employed by the player party, in the NWN 
experiments we pitted the learning party against the basic 
NWN opponent AI. The behaviour of the basic opponent AI 
is somewhat unpredictable and tries to adapt to the 
circumstances of an encounter. We observed that a party 
using the basic AI outperforms an unadapted opponent (i.e. 
an adaptive opponent that has all weights in the rulebase set 
to the same value). 
   We ran eleven tests, starting with newly initialised 
rulebases for each of the characters. Each test continued 
until the average turning point was reached. The results of 
the tests are presented in the next subsection. 

5.5  Results 

The results of the NWN experiments are presented in table 
3. The table shows that the results achieved in these 
experiments are similar to the results achieved in the 
simulation experiments. Apparently, dynamic scripting can 
be successfully applied in a state-of-the-art CRPG. 
 

 Average Turning Point Absolute Turning Point 
Tactic Low High Avg. Med. Low High Avg. Med. 
Basic AI 10 101 34 27 6 96 33 29 

Table 3: Results of the experiments described in section 5. There is 
only one opponent tactic, namely the basic AI as implemented by the 
NWN developers. The lowest, highest, average and median average 
and absolute turning points are shown.  

6   DISCUSSION 

Our experimental results show that dynamic scripting is 
capable of adapting rapidly to static or changing tactics. 
Hence, dynamic scripting is efficient and meets the four 
requirements stated in section 3 (fast, effective, robust and 
efficient). The results achieved with the NWN experiments 
detailed in section 5 clearly show that the implementation is 
commercially feasible, although some improvements are 
needed. In this section we discuss the following issues: 
improving dynamic scripting (6.1), offline dynamic scripting 
(6.2), generalisation within a game (6.3) and to other games 
(6.4), and the point-of-view of game developers (6.5). 

6.1  Improving Dynamic Scripting 

The results of the experiments, presented in subsections 4.5 
and 5.5, show that in some exceptional cases the adaptation 
process of the rulebases can become excessively long. We 
examined some of the rulebases that were generated in these 
cases, and found them to contain high weight values for 
rules that represent undesirable behaviour. Such behaviour, 
once learned (supposedly through chance), evidently can be 
difficult to unlearn. A straightforward solution is to store 
successful copies of the rulebase and to revert to an earlier 
rulebase when the performance seems to deteriorate. 
   We noted that if we let our experiments continue even 
after an average turning point was discovered, it sometimes 
happened after a while that the rulebase started to generate 
inferior scripts. This is because the rulebase continues to 
learn new behaviour, even when it is already successful. 
Simply stopping the learning process when it has reached an 
optimum is not a good solution, because our goal is to let the 
rulebase adapt to changing player tactics. A better solution is 



 

to develop a mechanism that protects the rulebase from 
degrading, such as the previously suggested storing of 
copies of successful rulebases. 

6.2  Offline Dynamic Scripting 

In our online learning experiments we only adapt weight 
values, rather than changing existing rules or adding new 
rules. In our view, such techniques would severely reduce 
the efficiency of the process and might interfere with the 
effectiveness of the generated scripts. However, during an 
offline training phase, which optimises the rulebase before a 
game is released, such techniques are certainly possible and 
can even be successful (Spronck et al. 2003). 

6.3  Generalisation within a Game 

Our experiments were limited to optimising the opponent AI 
in one specific encounter. In practice, games usually 
challenge the player with many different encounters, rather 
than with one specific encounter that is repeated over and 
over again. Especially in strategic CRPGs, such as 
BALDUR’S GATE and NEVERWINTER NIGHTS, different 
instances of an opponent type will have different 
characteristics, different spells and different equipment. Is it 
possible to use dynamic scripting to optimise a rulebase for 
an opponent type in these ever changing circumstances? We 
argue that it is, provided the rules in the rulebase are 
generalised. For instance, rules should not refer to the 
casting of specific spells, but instead to the casting of spells 
of a certain type (e.g., instead of stating “cast a fireball” a 
rule should state “cast a high-level damaging area-effect 
spell”). While, for instance, each opponent wizard in the 
game might be different, successful generalised tactics for 
one wizard will also work for most other wizards. Therefore, 
with generalised rules any wizard encounter can be used to 
update weights for the wizard opponent type. Our argument 
is supported by the fact that the basic opponent AI in NWN 
employs such generalised rules to ensure that the AI can 
adequately control any opponent instance that can be 
created. 

6.4  Generalisation to Other Games 

Although dynamic scripting turns out to be surprisingly 
efficient and effective for implementing online learning in 
some commercial games, the question remains whether it 
can be made sufficiently efficient for application in every 
type of commercial game. For action games the answer 
would be an unequivocal yes, because action games 
typically pit the player against hundreds of copies of one 
particular opponent instance. For strategic games where 
there is much variety in opponents it depends on how many 
different opponent types can be distinguished and how many 
instances of an opponent type can be found in the game. For 
practical purposes game designers will usually place only a 
limited number of different opponent types in a game, and 
many instances of each type, each slightly different from the 
rest. Most games, therefore, will contain enough encounters 
with each opponent type to optimise the associated dynamic 
scripting rulebase. If the weights in the rulebase do not all 
start at equal values, but are biased to give the objectively 
better rules a greater selection probability (for instance 

through an offline training process), the adaptation process 
will need even less trials than in our experiments, while the 
ability to adapt to novel tactics is preserved. 

6.5  The Point-of-view of Game Developers 

To the four requirements we defined for online learning 
(fast, effective, robust and efficient) commercial game 
developers would add two extra ones, namely that (5) the 
resulting AI should be understandable (which will make it 
easier for them to place their trust in it), and (6) the resulting 
AI should be non-repetitive (so it will not be too predictable, 
which detracts from the entertainment value). We argue that 
dynamic scripting meets these two additional requirements 
as well. First, dynamic scripting generates scripts, and 
therefore the results are understandable by definition. 
Second, scripts are always generated at random for each new 
encounter and thus the AI is non-repetitive. The differences 
between scripts will be greater if the maximum weight 
values are set low enough so that a considerable number of 
rules will end up with large enough weights to be selected 
often. 
   Commercial game developers would, however, not agree 
to have opponents attempt to learn to defeat the human 
player at all costs, which is what our fitness criterion, that 
relies heavily on winning and losing encounters, actually 
promotes. In commercial games, the human player should 
(because of entertainment purposes) and will (because of 
saving and reloading functionalities) always win an 
encounter. Therefore, in an actual commercial game fitness 
should rely more on the amount of damage done and the 
length of the fights. It might even be useful to punish a 
rulebase for winning a fight or damaging the player party too 
much, so that the entertainment value of the game for 
weaker players is protected. 
   Finally, it should be noted that if online learning is 
implemented in a game, the game will learn different things 
from different players and therefore different players will 
have a different playing experience. Publishers will insist 
that the Quality Assurance team will cover these different 
playing experiences while testing the game, which will 
obviously make the team’s task harder. This issue should be 
addressed in the design phase of a game, when the decision 
to use an online learning technique is made. 

7   CONCLUSIONS AND FUTURE WORK 

In this paper we proposed dynamic scripting as a technique 
to deal with unsupervised online adaptation of opponent AI, 
suitable for implementation in complex commercial 
computer games such as CRPGs. Dynamic scripting is based 
on the automatic online generation of AI scripts for 
computer game opponents by means of an adaptive rulebase. 
From our experimental results, we conclude that dynamic 
scripting is fast, effective, robust, and efficient and therefore 
has the potential to be successfully incorporated in 
commercial games. We tested the technique in a module for 
a state-of-the-art commercial CRPG, BioWare’s 
NEVERWINTER NIGHTS, which showed that the technique 
works as well in practice as it does in the simulation. 
However, some changes are needed before the technique is 
ready to be implemented in actual commercial games. 



 

Specifically, the algorithm should be augmented with a 
technique that protects the adaptation mechanism against 
learning ineffective behaviour by chance and then having 
difficulty to unlearn this inferior behaviour. 
   Our future work aims at optimising the dynamic scripting 
technique to make commercial implementation viable. In 
particular, we focus on tweaking the learning parameters, 
seeking ways to store successful rulebases to recover from 
inferior performance, studying methods to optimise the 
ranking of rules in the scripts, and experimenting with 
offline learning to optimise a rulebase before online learning 
takes place. Furthermore, since our main aim is to use online 
learning against human players, it is essential that we extend 
our experiments to assess if online learning actually 
increases the entertainment value of a game for human 
players. After all, for commercial game developers 
entertainment value is of primary concern when deciding 
whether or not to incorporate online learning in their games. 
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