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Abstract: Game artificial intelligence (Al) controls the decision-making process of computer-
controlled opponents in computer games. Adaptive game Al (i.e., game Al that can automatically
adapt the behaviour of the computer players to changes in the environment) can increase the
entertainment value of computer games. Successful adaptive game Al is invariably based on the
game’s domain knowledge. We show that an offline evolutionary algorithm can learn important
domain knowledge in the form of game tactics (i.e., a sequence of game actions) for dynamic
scripting, an offline algorithm inspired by reinforcement learning approaches that we use to create
adaptive game Al. We compare the performance of dynamic scripting under three conditions for
defeating non-adaptive opponents in a real-time strategy game. In the first condition, we manually
encode its tactics. In the second condition, we manually translate the tactics learned by the
evolutionary algorithm, and use them for dynamic scripting. In the third condition, this translation
is automated. We found that dynamic scripting performs best under the third condition, and both of
the latter conditions outperform manual tactic encoding. We discuss the implications of these
results, and the performance of dynamic scripting for adaptive game Al from the perspective of
machine learning research and commercial game development.
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1 Introduction

Today’s gaming environments are becoming increasingly realistic, especially in terms of the graphical
presentation of the virtual world. However, to further increase realism, the reasoning capabilities of
characters ‘living’ inside these virtual worlds must be addressed (Laird & van Lent, 2001). People
from both the game industry (Rabin, 2004) and academia (Laird & van Lent, 2001) predicted an
increasing importance of artificial intelligence (Al) in computer games.

The term game Al is used differently by game developers and academic researchers (Gold,
2004). Academic researchers restrict the use of this term to refer to intelligent behaviours of game
characters (Allen et al., 2001). In contrast, for game developers game Al is used in a broader sense to
encompass techniques such as pathfinding, animation systems, level geometry, collision physics,
vehicle dynamics, and even the generation of random numbers (Tomlinson, 2003). In this paper we use
this term in the narrower, academic sense.

High-quality game Al will increase the game playing challenge (Nayerek, 2004) and is a
potential selling point for a game. Development time for game Al is usually short; most game
companies assign graphics and storytelling the highest priorities (for marketing reasons) and typically
assign the implementation of game Al to the end of the development process (Nayerek, 2004), which
complicates designing and testing strong game Al. That is why even in state-of-the-art games, game Al
is generally of inferior quality (Schaeffer, 2001; Buro, 2004; Gold, 2004). Game Al can benefit from
academic research into commercial games (Forbus and Laird, 2002).

Adaptive game Al, which concerns methods for adapting the behaviour of computer-
controlled opponents, can potentially increase the quality of game Al. However, to ensure the
reliability of adaptive game Al, it must incorporate a sufficient amount of correct prior domain



knowledge (Manslow, 2002). If the incorporated domain knowledge is incorrect or insufficient,
adaptive game Al will not be reliable, and be unable to generate satisfying results.

Dynamic scripting is an offline reinforcement learning technique that can be used to
implement adaptive Al (Spronck et al., 2006). We implemented dynamic scripting in a real-time
strategy (RTS) game called Wargus, an open-source clone of the popular Warcraft 1™ game. Our
machine learning mechanism in Wargus focuses on an ambitious performance task, namely winning
RTS games. The quality of the knowledge base (i.e., the set of available actions) is essential for
achieving good performance with dynamic scripting.

To generate knowledge bases for use by the adaptive game Al opponents, we envision three
alternatives. The first alternative is to manually encode the knowledge bases. This may take a long
time, which game developers generally don’t have. Furthermore, there is a considerable risk that the
knowledge bases are substantially sub-optimal due to analysis and encoding errors. Consequently, the
adaptive game Al may not generate satisfying results.

For the second alternative, we investigated whether semi-automatically improving the
knowledge bases can increase the performance of the adaptive game Al. The semi-automatic approach
involves running machine learning experiments to discover strong tactics (i.e., action sequences)
offline after which they are manually added to knowledge bases. We implemented an evolutionary
algorithm in Wargus to search the space of effective tactics. Afterwards, we manually extracted tactics
from among those discovered and added them to the knowledge bases. The improved adaptive game
Al should be able to perform better versus strong players, and be more efficient in finding tactics of a
desired effectiveness. This approach alleviates some of the difficulties with the manual approach, but
manually modifying knowledge bases can still be cumbersome and time consuming.

The third alternative is to automatically generate the knowledge bases. As a first step, we
again use an offline evolutionary algorithm. However, unlike the semi-automatic approach where we
manually extracted the tactics from the evolved action sequences, the second step of this alternative
automatically transfers the domain knowledge obtained in the first step to the knowledge bases.

We report empirical results, which have been previously discussed by Ponsen et al. (2006a),
showing that the automatic approach outperforms the manual and semi-automatic approaches.
Therefore, we conclude that, at least for Wargus, high-quality domain knowledge used by the adaptive
Al opponents can be automatically generated.

This paper continues as follows. Section 2 discusses related work. Section 3 describes RTS
games and the complexity of Wargus. Section 4 discusses how dynamic scripting was implemented in
Wargus, while Section 5 introduces the evolutionary algorithm we used. Section 6 evaluates dynamic
scripting’s performance for the three competing knowledge acquisition approaches: manual, semi-
automatic and automatic. Section 7 discusses the results, and Section 8 presents conclusions and future
work.

2 Related Work

Although many studies exist on learning to win classical board games and other games with small
search spaces, few studies exist on learning to win complex strategy games. In recent years, some Al
researchers (Laird and Van Lent, 2001; Buro, 2004) have begun focusing on complex strategy games.
Game agents require sophisticated representations and reasoning capabilities to perform competently
in these environments, which are challenging to construct (Forbus et al., 2001). For this reason,
existing research efforts on complex strategy games often focus on simpler tasks. For example,
Guestrin et al. (2003) applied relational Markov decision process models to some limited Wargus
scenarios (e.g., 3x3 combat). Similarly, Cheng and Thawonmas (2004) proposed a case-based plan
recognition approach for assisting Wargus players, but only for low-level management tasks. Unlike
these experiments, we are focussing on the ambitious performance task of winning real-time strategy
games by reducing the complexity of Wargus through (automatic) knowledge acquisition.

Knowledge acquisition approaches are being investigated by many Al researchers (cf., Blythe
et al., 2001, lighami et al., 2002, Winner and Veloso, 2003). However, very little work has been done



on acquiring domain knowledge for game Al. We distinguish three classes of approaches: (1) manual,
(2) semi-automatic, and (3) automatic.

Manual knowledge acquisition: Research on these approaches concentrates on providing tools to
facilitate the knowledge acquisition process. Some games (e.g., Age of Empires™ and Command and
Conquer Generals™) include tools to encode new domain knowledge used by the game Al.

Semi-automatic knowledge acquisition: Research on these approaches concentrates on developing
tools that allow the improvement of manually created knowledge. For example, Street et al. (2001)
report on tools using pattern recognition techniques developed to help balance the capabilities of RTS
units. Typical RTS games implement the rock-scissors-paper principle. One unit may be well suited to
destroy a particular kind of unit or game element. However, this unit itself is particularly vulnerable to
attacks from other kinds of units. The problem is compounded by the fact that modern RTS games
such as Age of Empires™ offer different playing sides (usually called races). Each race has unique
units and properties. This makes it very difficult for game developers to find an adequate balance.

Automatic knowledge acquisition: Research on these approaches concentrates on applying them to
classic board games. For example, Kirby (2003) was successful in applying neural networks to acquire
domain knowledge for Backgammon, and partially successful in applying them to Go and Chess. The
main difficulty in using such approaches for game Al is that they require training examples to be
annotated with information describing how various transformations took place in the domain. This
requirement can be difficult to fulfil in actual games. In our automated knowledge acquisition
approach, we require as input only some pre-defined scripts, which RTS games typically provide.

3  Real-time Strategy Games

Real-Time Strategy (RTS) is a category of strategy games that usually focus on military combat. RTS
games such as Warcraft™ and Empire Earth™ require the player to control armies (consisting of
different types of units) and defeat all opposing forces that are situated in a virtual battlefield (often
called a map) in real-time. In most RTS games, the key to winning lies in efficiently collecting and
managing resources, and appropriately distributing these resources over the various game action
elements. Typically, the game Al in RTS games, which determines all decisions for a computer
opponent over the course of the whole game, is encoded in the form of scripts, which are lists of game
actions that are executed sequentially (Tozour 2002). We define a game action as an atomic
transformation in the game situation. Typical game actions in RTS games include constructing
buildings, researching new technologies, and combat. Both human and computer players can use these
actions to form their game strategy and tactics. We will employ the following definitions in this paper:
tactics are action sequences consisting out of one or more atomic game actions, and strategies consists
of a sequence of tactics that can be used to play a complete game.

3.1  Wargus

For our experiments, we selected the RTS game Wargus, with Stratagus as its underlying engine.
Stratagus is an open-source engine for building RTS games. Wargus (illustrated in Figure 1)
implements a clone of the popular RTS game Warcraft 1I™. In the context of Wargus, a complete
script represents an opponent strategy, and a sub-collection of game actions in a script represents a
tactic. A tactic can be as simple as one game action, i.e., “build a lumber mill”, or as complex as a
sequence of actions, i.e., “build a lumber mill, then build a defensive army consisting of soldiers, then
research new weaponry, and finally replace the town hall by a keep”. We had four opponent strategies
at our disposal for running our machine learning experiments:



Figure 1: A screen shot of a Wargus game.

1. Small Balanced Land Attack (SBLA): This strategy keeps a balance between offensive actions,
defensive actions, and research. It is effective against many different playing styles. The SBLA is
applied on a small map.

2. Large Balanced Land Attack (LBLA): This is a similar strategy to the SBLA, but applied on a
large map.

3. Soldier’s Rush (SR): This attempts to overwhelm the opponent with cheap military units in an
early state of the game. Since SR works best in fast games, we apply it on a small map.

4. Knight’s Rush (KR): This attempts to quickly advance technologically, launching large offences
as soon as strong units are available. Since KR works best in slower-paced games, we apply it on a
large map.

3.2 Reducing the Complexity of Wargus

RTS games include a wide variety of possible tactics that can be selected at any point in the game.
Typically, games such as Wargus are designed so that no single tactic dominates all others; they rather
follow the rock-paper-scissors principle (i.e., some tactics are particularly well suited against other
particular tactics but are themselves vulnerable against others). For example, solely focusing attention
on training an army might cause a lag in research accomplishments, which prevents creating army
units that are as strong as the neighbour’s. In contrast, neglecting the army can lead to a crushing
defeat at the hands of a strong neighbour. A continuous balance must be maintained among the
potential tactics. Intelligent decisions should be based on the current game situation and the (predicted)
decision model of the opponents. However, RTS games include only partially observable environments
that contain adversaries who modify the game state asynchronously, and whose decision models are
unknown, thereby making it infeasible obtain complete information on the current game situation. In
addition, to successfully play an RTS game, players must make their decisions in real-time (i.e., under
severe time constraints) and execute multiple orders simultaneously. We believe that these properties
of RTS games make them a very complex and challenging test-bed for Al research.

RTS games contain a comparatively large action space, which is defined as the set of possible
actions that can be executed at a particular moment. We roughly estimate the action space in Wargus to
be O(2"(AP) + 2'(D+S) + B(R+C)), where W is the current number of workers, A is the number of
assignments workers can perform (e.g., create a building, gather gold), P is the average number of
workplaces, T is the number of troops (fighters plus workers), D is the average number of directions
that a unit can move, S is the number of choices for a troop’s stance (i.e., stand, patrol, attack), B is the



number of buildings, R is the average number of choices for research objectives at a building, and C is
the average number of choices for units to create at a building. For the simple early game scenario
shown in Figure 1 (which includes some off-screen troops and an off-screen building), this estimate
yields a decision complexity of 1.5 x 10%, which is substantially higher than the average number of
possible moves in many board games (e.g., for chess, this is approximately 30). While the judicious
application of domain knowledge can reduce this high number to a few dozen sensible decisions,
acquiring this background knowledge is challenging.
Reinforcement learning techniques, such as dynamic scripting, learn a policy that maps
actions to specific game situations. In the
1 case of Wargus, with an estimated action
=2 space of 1.5 x 10° and an even larger state
space, learning becomes infeasible without
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Table 1: Description of the available high-level actions in Wargus.

Wargus Game Al Actions \

IAiForce (ForcelD, {force}) Define a force: determine the unit types and number of
e.g., AiForce(1,{“unit-grunt”, 3}) units that belong to it.
IAiCheckForce (ForcelD) Check if a force is complete and ready for combat.

e.g., AiCheckForce(1)
IAiAttackWithForce (forcelD) Command the Al to attack an enemy with all units

e.g., AiAttackWithForce(1) belonging to a predefined force.

IAiForceRole (forcelD, role) Define the role of a force: Assign it either a defensive or
e.g.,AiForceRole(1,”defend”) offensive role.

IAiNeed (unitType) Command the Al to train or build a unit of a specific unit
e.g., AiNeed(*“unit-footmen™) type (e.g., request the training of a soldier).

IAiResearch (researchType) Command the Al to pursue a specific research

e.g., AiResearch(*““upgrade-sword™)  [advancement.

IAiUpgradeTo (unitType) Command the Al to upgrade a specific unit.

e.g.,AiUpgradeTo(“‘upgrade-ranger")

4 Dynamic Scripting for Wargus

Game Al for complex games, such as Wargus, is mostly defined in scripts. Because scripts tend to be
long and complex (Brockington and Darrah, 2002), they are likely to contain weaknesses, which
human players can exploit. Spronck et al. (2006) introduced a technique, called dynamic scripting,
which can be used to generate Al opponent scripts that have the ability to adapt to a human player’s
behaviour. Dynamic scripting generates scripts for each computer-controlled opponent at the start of an
encounter (i.e., a fight between opposing teams), by randomly selecting a number of tactics from a
specific knowledge base. The tactics are designed using domain-specific knowledge. The probability
that a tactic is selected for a script is an increasing function of its associated weight value.

The learning mechanism in the dynamic scripting technique is based on reinforcement
learning techniques (Sutton and Barto, 1998). In dynamic scripting, learning proceeds as follows.
Upon completion of an encounter, the weights of the tactics employed during the encounter are
adapted depending on their contribution to the outcome. Tactics that lead to success are rewarded with
a weight increase, whereas tactics that lead to failure are punished with a weight decrease. The size of
the weight changes is determined by a weight-updating function. The increment or decrement of each
weight is compensated for by decreasing or increasing all remaining weights so as to keep the summed
total of weights in a knowledge base constant. Through the process of punishments and rewards,
dynamic scripting adapts to the human player in only a few trials.

Dynamic scripting can be applied to any form of game Al that meets three requirements: (1)
the game Al can be scripted, (2) domain knowledge on the characteristics of a successful script can be
collected, and (3) an evaluation function can be designed to assess the success of the function’s
execution. Such functions are not only found in games, but also in application areas, such as multi-
agent systems. Dynamic scripting has proven to be fast, effective, robust, and efficient (Spronck et al.,
2006).

The next subsections discuss the dynamic scripting implementation in Wargus. In Subsection
4.1 we discuss how tactics are extracted from a knowledge base to generate a dynamic script. In
Subsection 4.2 we describe the process for adapting the knowledge base.

4.1  Knowledge bases and Game States in Wargus

Typically, players in a RTS game such as Wargus start with few game actions available to them. As
players progress up the technology ladder, they acquire a larger arsenal of weapons, units, and
buildings. The tactics that can be used in a RTS game mainly depend on the availability of different
unit types and technologies.
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Figure 3: Schematic representation of dynamic script generation in Wargus

For a dynamic scripting implementation in Wargus, we must constrain the adaptive Al’s
tactics selection process. Therefore, we divided the game into a small number of distinct game states.
Each state corresponds to a unique knowledge base whose tactics can be selected by the dynamic
scripting technique when the game is in that particular state. We distinguish Wargus game states
according to types of available buildings (see Figure 2), which in turn determine the unit types that can
be built and the technologies that can be researched. Consequently, state changes are spawned by
tactics that create new buildings. Note that not all tactics include build actions.

Dynamic scripting starts by selecting tactics for the first state. When a tactic is selected that
spawns a state change, tactics will then be selected for the new state. To avoid monotonous behaviour,
each tactic is restricted to be selected only once per state. Tactic selection continues until either a total
of N tactics are selected (N=100 was used for the experiments) or until a final state was reached. The
value for N was determined during initial experiments: it was set sufficiently high so that the adaptive
game Al almost always reached the final state in which it possessed all relevant buildings. For this
final state, another M tactics are selected (M=20 was used for the experiments), before the script moves
into a repeating cycle (called the “attack loop”), which continuously initiates attacks on the opponent
civilizations. The dynamic script generation process is illustrated in Figure 3.

4.2  Weight Adaptation in Wargus

Weight updates in Wargus are based on both an evaluation of the performance of the adaptive Al
during the whole game (called the overall fitness), and between state changes (called the state fitness).
As such, the weight-updating function is based on a combination of state fitness and overall fitness.
Using both evaluations for weight updating increases the learning mechanism’s efficiency (Manslow,
2004). The overall fitness function F for player d controlled by dynamic scripting (henceforth called
the dynamic player) yields a value in the range [0,1]. It is defined as:

s, .
min ,b) qif d lost
F- (Sd+SU ) { } )
- S .
max(b, —¢ if d won
(b= | }

d 0

In Equation 1, Sq represents the score for the dynamic player, S, represents the score for the dynamic
player’s opponent, and be [0,1] is the break-even point. At the break-even point, weights remain
unchanged. For the dynamic player, the state fitness F; for state i is defined as:
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In Equation 2, Sy, represents the score of the dynamic player after state x, and S,y represents the score
of the dynamic player’s opponent after state x. The scoring function is domain-dependent, and should
reflect the relative strength of the two opposing players. For Wargus, we defined the score S, for player
X as:

S, =0.7M, +0.3B, ©)

In Equation 3, M, represents the military points for player x (i.e., the number of points awarded for
killing units and destroying buildings), and By represents the building points for player x (i.e., the
number of points awarded for training armies and constructing buildings). We prioritize military points
because experiences indicate that these are a better indication for the success of tactics than building
points.

After each game, the weights of all the employed tactics are updated. The weight-updating
function translates the fitness functions into weight adaptations for the tactics in the script. The weight-
update function W for the dynamic player is defined as:

max| Wiy W —032"Fp_os0°F P\ {F<b}
We b b )

min| W, 1035 Ppio7Fh R,Wmax\ {F=b}
1-b 1-b )

(4)

In Equation 4, W is the new weight value, W is the current weight value before the update, P is the
maximum penalty, R is the maximum reward, Wi,a is the maximum weight value, Wiy, is the minimum
weight value, F is the overall fitness of the dynamic player, F; is the state fitness for the dynamic
player in state i, and b is the break-even point. This equation prioritizes state performance over overall
performance because, even if a game is lost, we wish to prevent tactics from being punished (too
much) in states where performance is successful.

5  Evolutionary Algorithm in Wargus

For complex games such as Wargus, it is likely that the Al designers who are responsible for encoding
the knowledge bases overlook certain interactions between game actions. Consequently, the
incorporated domain knowledge may be sub-optimal, resulting in a weak or easily defeatable game Al.
Testing every combination of game actions is an impossible task for an Al designer, especially given
the short amount of time available for Al tuning. An offline learning mechanism can test out many
more Al variations than an individual developer can (Chan et al., 2004). In this section, we explain the
process of evolving domain knowledge for RTS games using an evolutionary algorithm (EA). The goal
of the EA in Wargus is to use offline learning to discover tactics that can be used to defeat static (i.e.,
non-adaptive) opponent strategies. In the following subsections, we describe the encoding of the
chromosome (5.1), the fitness function (5.2), and the genetic operators (5.3).
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Figure 4: Design of a chromosome to store game Al for Wargus.

5.1 Encoding

EA works with a population of chromosomes (in our experiments we use a population of size 50,
which proved sufficient during preliminary experiments to rapidly discover a variety of strong tactics),
each of which represents a static strategy. Figure 4 shows the chromosome’s design. The chromosome
is divided into the 20 states as defined earlier (see Figure 2). States include a state marker followed by
the state number and a series of genes. Each gene in the chromosome represents a game action. Four
different gene types exist, corresponding to the available actions in Wargus, namely (1) build genes,
(2) research genes, (3) economy genes, and (4) combat genes. Each gene consists of a gene ID that
indicates the gene’s type (B, R, E, and C, respectively), followed by values for the parameters needed
by the gene. Chromosomes for the initial population are generated randomly. A partial example
chromosome is shown at the bottom of Figure 4.

5.2 Fitness Function

To measure the success of a chromosome, we used the following fitness function F for the dynamic
player d (controlled by an evolved chromosome), which yields a value in the range [0,1]:

(c M,
. b d lost
- mm[cmax Mg+ M, j td tost Q)
max[b, M, J {d won}
M.+ M,

In Equation 5, My represents the military points for the dynamic player, M, the military points for the
dynamic player’s opponent, and b is the break-even point. C, represents the game cycle (i.e., the time it
took before the game is lost by one of the players, or the game was aborted because time ran out). Cpax
represents the maximum game cycle (i.e., the longest time a game is allowed to continue). When a
game reaches the end cycle and neither army has been defeated, scores at that time are measured and
the game is aborted. The factor C, / Cya ensures losing chromosomes that play a long game are
awarded higher fitness scores than losing chromosomes that play a short game. Our goal is to generate
a chromosome with a fitness exceeding a target value. When such a chromosome is found, the
evolution process ends. This is the fitness-stop criterion. We set the target value to 0.70, which
represents a clear victory for the dynamic player controlled by the evolved strategy. Since there is no
guarantee that a chromosome exceeding the target value will be found, the evolution process also ends
after it has generated a maximum number of chromosomes. This is the run-stop criterion. We set the
maximum number of solutions to 250. The choices for the fitness-stop and run-stop criteria were
determined during preliminary experiments.



Parent1: | Start | Statel | State2 | State6 | State8 | State12 | State13 | State 16 | State19 | State20 | End |

~
Child: | Start | Statel | State2 | State6 | State8 | State12 | State 13 | State 16 | State19 | State20 | End |

Parent2: | Start | Statel | State3 [ State4 | State8 | State12 | State 13 | State14 | State17 | State20 | End |

Figure 5: Example of a state crossover

5.3  Genetic Operators

Relatively successful chromosomes (as determined by a fitness function) are allowed to breed. To
select parent chromosomes for breeding, we used size-3 tournament selection (Buckland, 2004). This
method prevents early convergence and is computationally fast. Newly generated chromosomes
replace existing chromosomes in the population, using size-3 crowding (Goldberg, 1989). To breed
new chromosomes, we implemented four genetic operators. By design, all four ensure that a child
chromosome always represents legal game Al. The four genetic operators take into account activated
genes, which are genes representing game actions that were executed when fitness was assessed. Non-
activated genes are irrelevant to the chromosome. If a genetic operator produces a child chromosome
that is equal to a parent chromosome for all activated genes, the child is rejected and a new child is
generated. The four genetic operators are the following:

1. State Crossover selects two parents, and copies states from either parent to the child
chromosome. State crossover is controlled by “matching states”. A matching state is a state that
exists in both parent chromosomes. Figure 2 makes evident that, for Wargus, there are always at
least four matching states, namely state 1, state 12, state 13, and state 20, i.e., the player always
passes through these 4 states (unless the game ends prematurely). State crossover will only be
used when there are least three matching states with activated genes. A child chromosome is
created as follows. States are copied from the first parent chromosome to the child chromosome,
starting at state 1 and working down the chromosome. When there is a state change to a matching
state, there is a 50% probability that from that point on, the role of the two parents is switched, and
states are copied from the second parent. When the next state change to a matching state is
encountered, again a switch between the parents can occur. This continues until the last state has
been copied. The process is illustrated in Figure 5. In the figure, parent switches occur at state 8
and state 13.

2. Gene Replace Mutation selects one parent, and replaces economy, research or combat genes with
a 25 percent probability. It is allowed to replace a gene of a certain type with a different gene type
(e.g., it is allowed to replace a research gene with a combat gene). Building genes are excluded,
both for and as replacement, because these could spawn a state change and thus could possibly
corrupt the chromosome.

3. Gene Biased Mutation selects one parent and mutates parameters for existing economy or
combat genes with a 50 percent chance. The mutations are executed by adding a random integer
value in the range [-5, 5].

4. Randomization generates a random new chromosome.

Randomization had a 10 percent chance of being selected during evolution. The other genetic operators
had a 30 percent chance. With our randomization genetic operator and relatively high mutation and
crossover rates, we stimulate diversity in the population in order to broadly search the enormous space
of possible strategies in the Wargus game, in effect hoping to find a wide variety of different tactics.



6  Performance Evaluation of Dynamic Scripting in Wargus

We evaluated the performance of dynamic scripting under three conditions: using knowledge bases
that were (1) manually acquired, (2) semi-automatically acquired, and (3) automatically acquired. We
evaluated the performance of these three knowledge acquisition approaches by letting the computer
play the game against itself. One of the two opposing players was controlled by dynamic scripting (the
dynamic player), while the other was controlled by a static script (the static player). Each game ended
when of the players was defeated, or when a certain period of time had elapsed. If the game ended due
to the time restriction, the player with the highest score (calculated using Equation 3) was considered
to have won. After the game, the knowledge bases were adapted and used in the next game. A
sequence of 100 games constituted one test. We tested four strategies for the static player, namely the
SBLA, LBLA, SR, and KR (introduced in Section 3.1).

To quantify the relative performance of the dynamic player against the static player, we used
the randomization turning point (RTP), which is measured as follows. After each game, a
randomization test (Cohen 1995; pp. 168-170) was performed using the overall fitness values over the
last ten games, with the null hypothesis that both players are equally strong. The dynamic player was
said to outperform the static player if the randomization test concluded that the null hypothesis can be
rejected with a 90 percent probability in favour of the dynamic player. RTP is the number of the first
game in which the dynamic player statistically outperforms the static player. A low RTP value
indicates good efficiency for dynamic scripting.

In the following sub-sections, we will describe the process for encoding the knowledge bases
and the results for dynamic scripting using these knowledge bases.

6.1  Evaluation of the Manual Approach

For the first approach, we manually encoded the knowledge bases from scratch. The manually encoded
(ME) knowledge bases consisted of 50 higher-level tactics, each consisting of a single atomic game
action (e.g., constructing a blacksmith). Tactics can be classified into four basic categories, (1) build
tactics for constructing buildings (12 tactics), (2) research tactics for acquiring new technologies (9
tactics), (3) economy tactics for stimulating resource gathering (4 tactics), and (4) combat tactics for
offensive and defensive military operations (25 tactics). The tactics were designed based on the
domain knowledge found in strategy guides for Warcraft 1™ and our ‘common sense’ of RTS games.
A typical tactic in the knowledge bases allows the dynamic player to launch an attack at his opponent.
The domain knowledge here lies in the fact that this tactic automatically trains the most advanced units
available. Most strategy guides indicated that in Warcraft 11™ it is advisable to always attack with the
most advanced units available, e.g., a knight can slaughter a group of soldiers. Another form of built-in
domain knowledge is incorporated in the building tactics. According to most strategy guides, it is
important to build more than one barrack. On the other hand, it doesn’t really make sense to build more
than one blacksmith, so we prevent the Al from doing this. We expected it to be crucial to regularly
launch firm attacks and to have a steady defensive line at all times. For that reason half the tactics
inserted in the knowledge bases were military tactics.

We set P to 175, R to 200, Wy to 1250, Wy, to 25 and b to 0.5. The results of the evaluation
of dynamic scripting using the ME knowledge bases in Wargus are displayed in Table 2. The columns
of the table represent, from left to right: (1) the strategy used by the static player, (2) the number of
tests, (3) the average RTP calculated over all tests, (4) the number of tests that did not find an RTP
within 100 games, and (5) the average number of games won out of 100.

The results for the ME knowledge bases show relatively low values for the average RTPs for
both the SBLA and the LBLA. Therefore, we conclude that the dynamic player efficiently adapts to
these two opponent strategies. However, the dynamic player was unable to adapt to the SR and the KR
within 100 games. The dynamic player only won on average 1 out of 100 games against the SR, and 1
out of 50 games against the KR.



Table 2: Evaluation of dynamic scripting in
Wargus using the ME knowledge bases.

ME knowledge bases

Strategy Tests | RTP | >100 | Won
SBLA 31 50 0 60
LBLA 21 49 0 60

SR 10 - 10 1
KR 10 - 10 2

We believe that the reason for the inferior performance of the dynamic player against the two
rush strategies can be ascribed to the fact that these strategies are optimized and can only be defeated
by very specific counter-tactics, with little room for variation. It is therefore very hard to design
adaptive game Al that can defeat these rush strategies consistently. Another issue may be that the
knowledge bases do not contain the appropriate knowledge to easily design game Al that can beat the
rush strategies. For the next approach we investigated whether improving the domain knowledge
improves the performance of dynamic scripting against the rush strategies.

6.2  Evaluation of the Semi-Automatic Approach

For our second approach we manually improved the ME knowledge bases based on offline evolved
domain knowledge. We will refer to these knowledge bases as the manually improved (MI) knowledge
bases.

Evolving Domain Knowledge

We employed the evolutionary algorithm described in Section 5 to discover strong tactics offline that
can perform well against the manually designed strategies that the adaptive game Al was unable to
beat using the ME knowledge bases, namely the SR and KR strategies (see Table 2). The results of ten
tests against each of the two strong scripts are shown in Table 3. From left to right, the columns show
(1) the strategy used by the static player, (2) the number of tests, (3) the average fitness value, and (4)
the number of tests that ended because of the run-stop criterion. Based on the reported average fitness
scores in Table 3, we conclude that the evolutionary algorithm was successful in discovering static
strategies able to defeat the SR and KR scripts. All but two solutions had a fitness score higher than
our desired target fitness, which represents a clear victory.

Table 3: Evolutionary algorithm results.

Strategy Tests Avg. >250
SR 10 0.78 2
KR 10 0.75 0

Observations on the Evolved Chromosomes

The following observations were made about the chromosomes evolved against the SR. The SR is used
on a small map. As is usual for a small map, the game played by the chromosomes was always short.
Most chromosomes included only two (out of nine possible) states with activated genes. We found that
all ten chromosomes counter the SR with a soldier’s rush of their own. In eight out of ten
chromosomes, the solutions included building a blacksmith very early in the game, which allows the
research of weapon and armour upgrades. Then, the chromosomes selected at least two out of the three
possible research advancements, after which large attack forces were created. These eight
chromosomes succeeded because they ensure their soldiers are quickly upgraded to be more effective,
before they attack. The remaining two chromosomes overwhelmed the static player with sheer
numbers.



We made the following observations about the chromosomes evolved against the KR. First,
the KR is used on a large map, which frequently resulted in longer games. As an indication of this, on
average for each chromosome five or six states were activated. Against the KR, all chromosomes
included training a large number of workers to be able to expand quickly. They also included boosting
the economy by exploiting additional resource sites after setting up defences. Almost all chromosomes
evolved against the KR worked towards the goal of quickly creating advanced military units, in
particular knights. Seven out of ten chromosomes achieved this goal by employing a specific building
order, namely a blacksmith, followed by a lumber mill, followed by a keep, followed by stables. Two
out of ten chromosomes followed a building order that reached state 11 as quickly as possible (see
Figure 2). State 11 is the first state that allows the building of knights. Surprisingly, in several
chromosomes against the KR, the game Al employed many catapults. Warcraft 1I™ strategy guides
generally consider catapults to be inferior military units, because of their high costs and considerable
vulnerability. A possible explanation for the successful use of catapults is that, with their high
damaging abilities and large range, they are particularly effective against tightly packed armies, such
as groups of knights.

Manually Improving the Knowledge bases

We manually extracted strong tactics from the evolved chromosomes and incorporated these into the
MI knowledge bases. Based on our observations we decided to create four new tactics for the
knowledge bases, and to (slightly) change the parameters for several existing combat tactics.

The first new tactic was designed to be able to deal with the SR. The tactic contained the
pattern that was observed in most of the evolved chromosomes against the SR, namely a combination
of the building of a blacksmith, followed by the research of several upgrades, followed by the creation
of a large offensive force.

The second tactic was designed to be able to deal with the KR. Against the KR, almost all
evolved chromosomes aimed at creating advanced military units quickly. The new tactic checks
whether it is possible to reach a state that allows the creation of advanced military units, by
constructing one new building. If this is possible, the tactic constructs that building, and creates an
offensive force consisting of the advanced military units.

The third tactic was aimed at boosting the economy by exploiting additional resource sites. In
the evolved chromosomes, we discovered that exploitation of additional resource sites only occurred
after a defensive force was built. The new tactic mimics this by preparing the exploitation of additional
resource sites with the building of a defensive army.

The fourth tactic was a straightforward translation of the best chromosomes found against the
KR. Simply all activated genes for each state were translated and combined in one tactic, and stored in
the knowledge base corresponding to the state.

Besides the creation of the four new tactics, small changes were made to some of the existing
combat tactics by changing the parameters to increase the number of units of types clearly preferred by
the chromosomes, and to decrease the number of units of types avoided by the chromosomes. Through
these changes, the use of catapults was encouraged.

Results

To empirically validate whether the changes to the ME knowledge bases resulted in an improved
performance for dynamic scripting, we repeated the experiments, now using the MI knowledge bases.
Table 4 summarizes the results. We set the values of the maximum reward and maximum penalty to
400, to allow dynamic scripting to reach the boundaries of the weight values faster. The columns
represent the same variables as used in Table 2.



Table 4: Evaluation of dynamic scripting in
Wargus using the M1 knowledge bases.

M1 knowledge bases

Strategy Tests | RTP | >100 | Won
SBLA 11 19 0 72
LBLA 11 24 0 66

SR 10 - 10 27
KR 10 - 10 10

A comparison of the results with the ME and MI knowledge bases show that the performance of
dynamic scripting is considerably improved against all opponent strategies. Against the two balanced
strategies, SBLA and LBLA, the average RTP is reduced by more than 50 percent. Against the two
optimized strategies, the SR and the KR, the number of games won out of 100 has increased
considerably. We conclude that the manual changes (based on evolved chromosomes against the KR
and SR) to the ME knowledge bases improved performance, in particular because during the
experiments we observed that dynamic scripting assigned the new tactics large weights. However,
despite these improvements, dynamic scripting still cannot statistically outperform the two rush
strategies.

6.3  Evaluation of the Automatic Approach

Both the manual and semi-automatic approaches can be very costly in terms of time. For our third
approach, we completely automated the process of generating knowledge bases. These knowledge
bases are henceforth called the automatically evolved (AE) knowledge bases. The steps for
automatically generating knowledge bases are schematically illustrated in Figure 6.

Evolving Domain Knowledge

The first step in the automatic approach (EA) involves using the evolutionary algorithm described in
Section 5 to search for counter-strategies that defeat clearly distinguishable opponent strategies. The
opponent strategies (i.e., game scripts) are provided to EA as a training set, the only manual input
required. This training set contains (manually designed) static scripts and (automatically generated)
evolutionary scripts. Static scripts are the default scripted opponents typically provided with early
versions of the game engine to record the strategies often employed by human players while testing
alpha and/or beta versions of the game engine. In contrast, an evolutionary script is a previously
evolved chromosome that will be used as an opponent strategy to evolve new chromosomes. Static
scripts have the advantage that they are usually of high quality (since they are recorded from human
player strategies). In contrast, evolutionary scripts have the advantage that they can be generated
completely automatically. Our training set includes the default-scripted opponents provided with the
Stratagus engine (strategies 1 to 4 introduced in Section 3.1), and the evolutionary scripts (36
strategies). The output of the evolutionary algorithm consists of a set counter-strategies for defeating
the scripts in the training set.

training script 1 | counter strategy 1]
training script 2 | counter strategy2 |

Adaptive Game
Al Oppanent

training script 7 counter sirategy 71

h

T

Figure 6: Schematic representation of the automatic knowledge acquisition process




Automatically Improving the Knowledge Bases

The second step (KT) automatically transfers the domain knowledge stored in the evolved
chromosomes to the knowledge bases that are used by the adaptive Al mechanism, in this case
dynamic scripting. Unlike the semi-automatic approach discussed in Subsection 6.2, here we
automatically recognize and extract tactics from the evolved chromosomes. The applicability of
possible tactics during a game mainly depend on the available units and technology, which in RTS
games typically depend on the buildings that the player possesses. Therefore, we can distinguish tactics
based on the game states for Wargus as illustrated in Figure 2. All genes (i.e., the sequence of all game
actions) grouped in an activated state (an activated state includes at least one activated gene) in a
chromosome are considered to be a single tactic. The example chromosome in Figure 4 illustrates two
potential tactics. The first tactic for state 1 includes genes 1.1 and 1.2. This tactic will be inserted into
the knowledge base for state 1. Because gene 1.2 spawns a state change, the next genes will contribute
to a different tactic for a different state.

Results

We evolved 40 chromosomes against the strategies provided in the training set. The EA was able to
find a strong counter-strategy against each strategy in the training set. All chromosomes had a fitness
score higher than 0.7 (as calculated with Equation 5), which represents a clear victory. In the KT step,
the 40 evolved chromosomes produced 164 tactics that were added to the AE knowledge bases.

We repeated the experiments with dynamic scripting using the AE knowledge bases. The
experimental parameters for dynamic scripting were unchanged. Table 5 summarizes the results.
Dynamic scripting with the AE knowledge bases outperforms both balanced strategies before any
learning occurs (e.g., before weights are adapted). In previous tests against the SR (using the ME and
MI knowledge bases), dynamic scripting was unable to find an RTP. In contrast, dynamic scripting
using the AE knowledge bases recorded an average RTP of 51 against the SR.

Table 5: Evaluation of dynamic scripting in
Wargus using the AE knowledge bases.

AE knowledge bases \

Strategy Tests | RTP | >100 | Won
SBLA 11 10 0 85
LBLA 11 11 0 76

SR 21 51 0 29
KR 10 - 10 13

7 Discussion

Based on a comparison of the results for the three competing approaches, illustrated in Figures 7 and 8,
we may conclude that the fully automated approach obtained the best results for dynamic scripting.
With the AE knowledge bases, RTP values against all strategies except KR have substantially
decreased, and on average more games are won. We believe that this increased performance, compared
to the other two knowledge acquisition approaches, occurred for at least three reasons.

The first reason is that the AE knowledge bases were not restricted to the (potentially poor)
domain knowledge provided by the designer. We were responsible for manually encoding and
manually improving the domain knowledge, and we hardly consider ourselves domain experts. In
particular, we expect performance for the manual approach to increase when allowing an expert to
encode the domain knowledge. However, manually encoding knowledge bases for complex domains
such as Wargus is very challenging. A domain expert alone might not generate satisfying results.
Being an expert in a particular domain does not imply that this person is also qualified to formalize the



Figures 7 and 8: Figure 7 (on the left) and Figure 8 (on the right) illustrate respectively the
recorded average RTP values and the average number of games won out of a 100 for the three
competing approaches (for each group of three the left represents the manual approach, the
middle the semi-automatic approach and the right bar the automatic approach). The x-axis lists
the opponent strategies. The y-axis in Figure 7 represents the average RTP value. A low RTP
value indicates good efficiency for dynamic scripting. The five bars that reached 100 represent
runs where no RTP was found (e.g., dynamic scripting was unable to statistically out-perform the
specified opponent). The y-axis in Figure 8 represents the average number of games won out of a
100 by dynamic scripting.
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knowledge in a way that a program can successfully use it. This task is typically tackled by a
knowledge engineer.

The second reason is that the AE knowledge bases include mostly tactics consisting of
multiple game actions, whereas the tactics in both the ME and MI knowledge bases mostly consisted
of single atomic actions. In the latter part of Section 3.2, we explained that we constrained the action
space by employing a high-level control over the Al in the form of scripted game actions. Knowledge
bases consisting of compound tactics (i.e., an effective combination of fine-tuned game actions) further
reduce the search complexity in Wargus by providing an even higher-level control over the Al,
allowing dynamic scripting to achieve relatively fast adaptation against many static opponents.

The third reason is that the automated knowledge acquisition approach is the only one that
actually receives feedback from the game engine. An analogy can be made with wrapper and filter
models for feature selection (Kohavi & John, 1997). Wrapper models select features by testing
tentative selections on the targeted prediction algorithm (e.g., a classifier), while filter models do not
(e.g., a filter model might select features according to their mutual information gain). Thus, while filter
models have lower computational complexity, they employ a different bias for feature selection than
the target algorithm itself. Similarly, our AE approach uses expensive game play to acquire tactics.
While the manual and semi-automatic approaches have lower computational costs, there is no
guarantee that their tactic selection biases match the biases of the game engine itself.

The Issue of Generalization

The automatic approach produced the best results with dynamic scripting. However, it is possible that
the resulting knowledge bases from the AE process were tailored against specific game Al strategies
(i.e., the ones received as input for the AE process). In particular, scripts 1 to 4 (SBLA, LBLA, SR,
and KR) were both in the training and test set. We decided to run additional experiments against scripts
that were not in the training set. As part of a game programming class at Lehigh University, students
were asked to create Wargus game scripts for a tournament. To qualify for the tournament, students
needed to generate scripts that defeat scripts 1 to 4 in a predefined map. The top four competitors in the
tournament (SC1-SC4) were used for testing against dynamic scripting. During the tournament, we
learned that the large map was unbalanced (i.e., one starting location for a player was superior over the
other starting locations). Therefore, we tested the student scripts on the small map.



Dynamic scripting using the AE knowledge bases was played against the new student scripts.
The experimental parameters for dynamic scripting were unchanged. Table 6 summarizes the results
against the student scripts. These results were encouraging. Only the champion script puts up a good
fight; the others were already defeated from the start. We may conclude that the AE knowledge bases
include generalized tactics, since dynamic scripting performs well against four independently created
scripts that were not involved in the training set for the evolutionary algorithm.

Table 6: Evaluation of dynamic scripting using the
AE knowledge bases against the student scripts.

AE knowledge bases |

Strategy Tests | RTP | >100 | Won
SC1 10 83 5 27
SC2 10 19 0 61
SC3 10 12 0 84
SC4 10 20 0 73

8 Conclusions and Future Work

We detailed three alternatives for acquiring high-quality domain knowledge used by adaptive game Al:
manual, semi-automatic, and automatic. We first introduced our test environment Wargus, a faithful
clone of the Warcraft 11™ game, whose characteristics are typical of RTS games. We then discussed
dynamic scripting, an adaptive game Al technique. We explained that domain knowledge is a crucial
factor to the performance of dynamic scripting. We showed that, in our experiments, for the task of
winning RTS games dynamic scripting’s performance is best when using the automatic knowledge
acquisition approach. The automatic approach requires as input a collection of pre-defined scripts.
These are readily available in typical commercial games from various sources, including scripts used
for testing the game engine (e.g., scripts that record human playing strategies). We also showed that
the automatically generated knowledge bases included strong, generalized tactics that can perform well
against many different opponent strategies. We therefore draw the following conclusion from our
experiments: It is possible to automatically generate high-quality domain knowledge that can be used
to generate strong adaptive Al opponents in RTS games.

Our future work extends the discussed research in several directions. In dynamic scripting we
are exploring ways not only to automatically generate knowledge bases, but also ways to automatically
discover orderings and relationships between different knowledge elements. In the area of knowledge
transfer, in the TIELT (2006) project, we are investigating ways to reuse previously discovered
knowledge in new situations. For example, in preliminary research, Ponsen et al. (2006b) learned a
navigation policy for a worker unit in a RTS game that generalized to unseen situations. Finally, since
the ultimate goal of most games is to entertain human players, we are looking ways to create game Al
that adapts to the entertainment value of game Al, rather than its effectiveness.
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