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Abstract: Game artificial intelligence (AI) controls the decision-making process of computer-
controlled opponents in computer games. Adaptive game AI (i.e., game AI that can automatically 
adapt the behaviour of the computer players to changes in the environment) can increase the 
entertainment value of computer games. Successful adaptive game AI is invariably based on the 
game’s domain knowledge. We show that an offline evolutionary algorithm can learn important 
domain knowledge in the form of game tactics (i.e., a sequence of game actions) for dynamic 
scripting, an offline algorithm inspired by reinforcement learning approaches that we use to create 
adaptive game AI. We compare the performance of dynamic scripting under three conditions for 
defeating non-adaptive opponents in a real-time strategy game. In the first condition, we manually 
encode its tactics. In the second condition, we manually translate the tactics learned by the 
evolutionary algorithm, and use them for dynamic scripting. In the third condition, this translation 
is automated. We found that dynamic scripting performs best under the third condition, and both of 
the latter conditions outperform manual tactic encoding. We discuss the implications of these 
results, and the performance of dynamic scripting for adaptive game AI from the perspective of 
machine learning research and commercial game development. 

Keywords: Computer games, artificial intelligence, real-time strategy, reinforcement learning, 
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1 Introduction 

Today’s gaming environments are becoming increasingly realistic, especially in terms of the graphical 
presentation of the virtual world. However, to further increase realism, the reasoning capabilities of 
characters ‘living’ inside these virtual worlds must be addressed (Laird & van Lent, 2001). People 
from both the game industry (Rabin, 2004) and academia (Laird & van Lent, 2001) predicted an 
increasing importance of artificial intelligence (AI) in computer games.  
 The term game AI is used differently by game developers and academic researchers (Gold, 
2004). Academic researchers restrict the use of this term to refer to intelligent behaviours of game 
characters (Allen et al., 2001). In contrast, for game developers game AI is used in a broader sense to 
encompass techniques such as pathfinding, animation systems, level geometry, collision physics, 
vehicle dynamics, and even the generation of random numbers (Tomlinson, 2003). In this paper we use 
this term in the narrower, academic sense.  
 High-quality game AI will increase the game playing challenge (Nayerek, 2004) and is a 
potential selling point for a game. Development time for game AI is usually short; most game 
companies assign graphics and storytelling the highest priorities (for marketing reasons) and typically 
assign the implementation of game AI to the end of the development process (Nayerek, 2004), which 
complicates designing and testing strong game AI. That is why even in state-of-the-art games, game AI 
is generally of inferior quality (Schaeffer, 2001; Buro, 2004; Gold, 2004). Game AI can benefit from 
academic research into commercial games (Forbus and Laird, 2002). 
 Adaptive game AI, which concerns methods for adapting the behaviour of computer-
controlled opponents, can potentially increase the quality of game AI. However, to ensure the 
reliability of adaptive game AI, it must incorporate a sufficient amount of correct prior domain 

 



 
 
 

 

knowledge (Manslow, 2002). If the incorporated domain knowledge is incorrect or insufficient, 
adaptive game AI will not be reliable, and be unable to generate satisfying results.  
 Dynamic scripting is an offline reinforcement learning technique that can be used to 
implement adaptive AI (Spronck et al., 2006). We implemented dynamic scripting in a real-time 
strategy (RTS) game called Wargus, an open-source clone of the popular Warcraft II™ game. Our 
machine learning mechanism in Wargus focuses on an ambitious performance task, namely winning 
RTS games. The quality of the knowledge base (i.e., the set of available actions) is essential for 
achieving good performance with dynamic scripting. 
 To generate knowledge bases for use by the adaptive game AI opponents, we envision three 
alternatives. The first alternative is to manually encode the knowledge bases. This may take a long 
time, which game developers generally don’t have. Furthermore, there is a considerable risk that the 
knowledge bases are substantially sub-optimal due to analysis and encoding errors. Consequently, the 
adaptive game AI may not generate satisfying results. 
 For the second alternative, we investigated whether semi-automatically improving the 
knowledge bases can increase the performance of the adaptive game AI. The semi-automatic approach 
involves running machine learning experiments to discover strong tactics (i.e., action sequences) 
offline after which they are manually added to knowledge bases. We implemented an evolutionary 
algorithm in Wargus to search the space of effective tactics. Afterwards, we manually extracted tactics 
from among those discovered and added them to the knowledge bases. The improved adaptive game 
AI should be able to perform better versus strong players, and be more efficient in finding tactics of a 
desired effectiveness. This approach alleviates some of the difficulties with the manual approach, but 
manually modifying knowledge bases can still be cumbersome and time consuming. 
 The third alternative is to automatically generate the knowledge bases. As a first step, we 
again use an offline evolutionary algorithm. However, unlike the semi-automatic approach where we 
manually extracted the tactics from the evolved action sequences, the second step of this alternative 
automatically transfers the domain knowledge obtained in the first step to the knowledge bases.  
 We report empirical results, which have been previously discussed by Ponsen et al. (2006a), 
showing that the automatic approach outperforms the manual and semi-automatic approaches. 
Therefore, we conclude that, at least for Wargus, high-quality domain knowledge used by the adaptive 
AI opponents can be automatically generated.   
 This paper continues as follows. Section 2 discusses related work. Section 3 describes RTS 
games and the complexity of Wargus. Section 4 discusses how dynamic scripting was implemented in 
Wargus, while Section 5 introduces the evolutionary algorithm we used. Section 6 evaluates dynamic 
scripting’s performance for the three competing knowledge acquisition approaches: manual, semi-
automatic and automatic. Section 7 discusses the results, and Section 8 presents conclusions and future 
work. 

2 Related Work 

Although many studies exist on learning to win classical board games and other games with small 
search spaces, few studies exist on learning to win complex strategy games. In recent years, some AI 
researchers (Laird and Van Lent, 2001; Buro, 2004) have begun focusing on complex strategy games. 
Game agents require sophisticated representations and reasoning capabilities to perform competently 
in these environments, which are challenging to construct (Forbus et al., 2001). For this reason, 
existing research efforts on complex strategy games often focus on simpler tasks. For example, 
Guestrin et al. (2003) applied relational Markov decision process models to some limited Wargus 
scenarios (e.g., 3×3 combat). Similarly, Cheng and Thawonmas (2004) proposed a case-based plan 
recognition approach for assisting Wargus players, but only for low-level management tasks. Unlike 
these experiments, we are focussing on the ambitious performance task of winning real-time strategy 
games by reducing the complexity of Wargus through (automatic) knowledge acquisition. 

Knowledge acquisition approaches are being investigated by many AI researchers (cf., Blythe 
et al., 2001, Ilghami et al., 2002, Winner and Veloso, 2003). However, very little work has been done 

 



 
 
 

 

on acquiring domain knowledge for game AI. We distinguish three classes of approaches: (1) manual, 
(2) semi-automatic, and (3) automatic.  

 
Manual knowledge acquisition: Research on these approaches concentrates on providing tools to 
facilitate the knowledge acquisition process. Some games (e.g., Age of Empires™ and Command and 
Conquer Generals™) include tools to encode new domain knowledge used by the game AI. 
 
Semi-automatic knowledge acquisition: Research on these approaches concentrates on developing 
tools that allow the improvement of manually created knowledge. For example, Street et al. (2001) 
report on tools using pattern recognition techniques developed to help balance the capabilities of RTS 
units. Typical RTS games implement the rock-scissors-paper principle. One unit may be well suited to 
destroy a particular kind of unit or game element. However, this unit itself is particularly vulnerable to 
attacks from other kinds of units. The problem is compounded by the fact that modern RTS games 
such as Age of Empires™ offer different playing sides (usually called races). Each race has unique 
units and properties. This makes it very difficult for game developers to find an adequate balance.   
 
Automatic knowledge acquisition: Research on these approaches concentrates on applying them to 
classic board games. For example, Kirby (2003) was successful in applying neural networks to acquire 
domain knowledge for Backgammon, and partially successful in applying them to Go and Chess. The 
main difficulty in using such approaches for game AI is that they require training examples to be 
annotated with information describing how various transformations took place in the domain. This 
requirement can be difficult to fulfil in actual games. In our automated knowledge acquisition 
approach, we require as input only some pre-defined scripts, which RTS games typically provide. 

3 Real-time Strategy Games 

Real-Time Strategy (RTS) is a category of strategy games that usually focus on military combat. RTS 
games such as Warcraft™ and Empire Earth™ require the player to control armies (consisting of 
different types of units) and defeat all opposing forces that are situated in a virtual battlefield (often 
called a map) in real-time. In most RTS games, the key to winning lies in efficiently collecting and 
managing resources, and appropriately distributing these resources over the various game action 
elements. Typically, the game AI in RTS games, which determines all decisions for a computer 
opponent over the course of the whole game, is encoded in the form of scripts, which are lists of game 
actions that are executed sequentially (Tozour 2002). We define a game action as an atomic 
transformation in the game situation. Typical game actions in RTS games include constructing 
buildings, researching new technologies, and combat. Both human and computer players can use these 
actions to form their game strategy and tactics. We will employ the following definitions in this paper: 
tactics are action sequences consisting out of one or more atomic game actions, and strategies consists 
of a sequence of tactics that can be used to play a complete game. 

3.1 Wargus 

For our experiments, we selected the RTS game Wargus, with Stratagus as its underlying engine. 
Stratagus is an open-source engine for building RTS games. Wargus (illustrated in Figure 1) 
implements a clone of the popular RTS game Warcraft II™. In the context of Wargus, a complete 
script represents an opponent strategy, and a sub-collection of game actions in a script represents a 
tactic. A tactic can be as simple as one game action, i.e., “build a lumber mill”, or as complex as a 
sequence of actions, i.e., “build a lumber mill, then build a defensive army consisting of soldiers, then 
research new weaponry, and finally replace the town hall by a keep”. We had four opponent strategies 
at our disposal for running our machine learning experiments: 
 

 



 
 
 

 

Figure 1: A screen shot of a Wargus game. 

1. Small Balanced Land Attack (SBLA): This strategy keeps a balance between offensive actions, 
defensive actions, and research. It is effective against many different playing styles. The SBLA is 
applied on a small map.  

2. Large Balanced Land Attack (LBLA): This is a similar strategy to the SBLA, but applied on a 
large map.  

3. Soldier’s Rush (SR): This attempts to overwhelm the opponent with cheap military units in an 
early state of the game. Since SR works best in fast games, we apply it on a small map. 

4. Knight’s Rush (KR): This attempts to quickly advance technologically, launching large offences 
as soon as strong units are available. Since KR works best in slower-paced games, we apply it on a 
large map.  

3.2 Reducing the Complexity of Wargus 

RTS games include a wide variety of possible tactics that can be selected at any point in the game. 
Typically, games such as Wargus are designed so that no single tactic dominates all others; they rather 
follow the rock-paper-scissors principle (i.e., some tactics are particularly well suited against other 
particular tactics but are themselves vulnerable against others). For example, solely focusing attention 
on training an army might cause a lag in research accomplishments, which prevents creating army 
units that are as strong as the neighbour’s. In contrast, neglecting the army can lead to a crushing 
defeat at the hands of a strong neighbour. A continuous balance must be maintained among the 
potential tactics. Intelligent decisions should be based on the current game situation and the (predicted) 
decision model of the opponents. However, RTS games include only partially observable environments 
that contain adversaries who modify the game state asynchronously, and whose decision models are 
unknown, thereby making it infeasible obtain complete information on the current game situation. In 
addition, to successfully play an RTS game, players must make their decisions in real-time (i.e., under 
severe time constraints) and execute multiple orders simultaneously. We believe that these properties 
of RTS games make them a very complex and challenging test-bed for AI research.  
 RTS games contain a comparatively large action space, which is defined as the set of possible 
actions that can be executed at a particular moment. We roughly estimate the action space in Wargus to 
be O(2W(A⋅P) + 2T(D+S) + B(R+C)), where W is the current number of workers, A is the number of 
assignments workers can perform (e.g., create a building, gather gold), P is the average number of 
workplaces, T is the number of troops (fighters plus workers), D is the average number of directions 
that a unit can move, S is the number of choices for a troop’s stance (i.e., stand, patrol, attack), B is the 

 



 
 
 

 

number of buildings, R is the average number of choices for research objectives at a building, and C is 
the average number of choices for units to create at a building. For the simple early game scenario 
shown in Figure 1 (which includes some off-screen troops and an off-screen building), this estimate 
yields a decision complexity of 1.5 x 103, which is substantially higher than the average number of 
possible moves in many board games (e.g., for chess, this is approximately 30). While the judicious 
application of domain knowledge can reduce this high number to a few dozen sensible decisions, 
acquiring this background knowledge is challenging.  

Reinforcement learning techniques, such as dynamic scripting, learn a policy that maps 
actions to specific game situations. In the 
case of Wargus, with an estimated action 
space of 1.5  x 103 and an even larger state 
space, learning becomes infeasible without 
abstractions. To reduce the complexity of 
Wargus, we created an abstraction of the 
state space by designing the building state 
lattice displayed in Figure 2. Consisting of 
20 states, it defines sequences of building 
constructions that can occur during a Wargus 
game, where each state corresponds to the 
types of constructed buildings, which in turn 
determine the unit types and technologies 
that can be researched. Consequently, state 
changes are spawned by tactics that create 
new buildings. For example, starting with a 
town hall and barracks, the next building 
choices are a lumber mill, a blacksmith, or a 
keep (which replaces the town hall). 
Building one of these causes a transition 
from state 1 to states 2, 3, or 4, respectively. 

 

Figure 2: A building-specific state lattice for
Wargus, where nodes represent states (defined by 
a set of completed buildings), and state transitions 
involve constructing a specific building. 
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 We further reduced the Wargus 
complexity by constraining the action space 
using a high-level language for game 
actions. The high-level orders, listed in Table 
1, interface with the available API provided 
by the Stratagus engine. This high-level API 
represents all possible game actions in the 
Wargus game on an abstract level. A typical 
high-level order is to construct a particular 
building. Deciding the best place to construct 
the building and deciding which worker will 
be assigned to the task is left to the engine, 
and will not take part in the search space for 
the machine learning algorithm. Another 
high-level order is to inform the AI to attack 
the opponent with an army. The training of 
individual soldiers and the exact details of 
the attack (e.g., planning an attack route, 
selecting a target) are also determined by the 
Stratagus engine. 
 Together, the building lattice and 

e list th of high-level orders constrain the 
search space of useful strategies to a 
manageable size. 
 

 



 
 
 

 

Table 1: Description of the available high-level actions in Wargus. 
 
Wargus Game AI Actions 
AiForce (ForceID, {force}) 
e.g., AiForce(1,{“unit-grunt”, 3}) 

Define a force: determine the unit types and number of 
units that belong to it. 

AiCheckForce (ForceID) 
e.g., AiCheckForce(1) 

Check if a force is com  plete and ready for combat.

AiAttackWithForce (forceID) Command the AI to attack an enemy with all units 
e.g., AiAttackWithForce(1) belonging to a predefined force. 

AiForceRole (forceID, role)  it either a defensive or 
e.g.,AiForceRole(1,”defend”) 

Define the role of a force: Assign
offensive role. 

AiNeed (unitType) 
 e.g., AiNeed(“unit-footmen”)

I to train or build a unit of a specific unit Command the A
type (e.g., request the training of a soldier). 

AiResearch (researchType) 
d”) 

h 
e.g., AiResearch(“upgrade-swor

Command the AI to pursue a specific researc
advancement. 

AiUpgradeTo (unitType) 
e.g.,AiUpgradeTo(“upgrade-ranger") 

AI to upgrade a specific unit.Command the  

4 Dynamic Scripting for Wargus 

Game AI for complex games, such as Wargus, is mostly defined in scripts. Because scripts tend to be 

nforcement 
arning

I that meets three requirements: (1) 
e gam

The next subsections discuss the dynamic scripting implementation in Wargus. In Subsection 
.1 we 

4.1 Knowledge bases and Game States in Wargus 

Typically, players in a RTS game such as Wargus start with few game actions available to them. As 

unit types and technologies.  

long and complex (Brockington and Darrah, 2002), they are likely to contain weaknesses, which 
human players can exploit. Spronck et al. (2006) introduced a technique, called dynamic scripting, 
which can be used to generate AI opponent scripts that have the ability to adapt to a human player’s 
behaviour. Dynamic scripting generates scripts for each computer-controlled opponent at the start of an 
encounter (i.e., a fight between opposing teams), by randomly selecting a number of tactics from a 
specific knowledge base. The tactics are designed using domain-specific knowledge. The probability 
that a tactic is selected for a script is an increasing function of its associated weight value.  
 The learning mechanism in the dynamic scripting technique is based on rei
le  techniques (Sutton and Barto, 1998). In dynamic scripting, learning proceeds as follows. 
Upon completion of an encounter, the weights of the tactics employed during the encounter are 
adapted depending on their contribution to the outcome. Tactics that lead to success are rewarded with 
a weight increase, whereas tactics that lead to failure are punished with a weight decrease. The size of 
the weight changes is determined by a weight-updating function. The increment or decrement of each 
weight is compensated for by decreasing or increasing all remaining weights so as to keep the summed 
total of weights in a knowledge base constant. Through the process of punishments and rewards, 
dynamic scripting adapts to the human player in only a few trials.  
 Dynamic scripting can be applied to any form of game A
th e AI can be scripted, (2) domain knowledge on the characteristics of a successful script can be 
collected, and (3) an evaluation function can be designed to assess the success of the function’s 
execution. Such functions are not only found in games, but also in application areas, such as multi-
agent systems. Dynamic scripting has proven to be fast, effective, robust, and efficient (Spronck et al., 
2006). 
 
4 discuss how tactics are extracted from a knowledge base to generate a dynamic script. In 
Subsection 4.2 we describe the process for adapting the knowledge base. 

players progress up the technology ladder, they acquire a larger arsenal of weapons, units, and 
buildings. The tactics that can be used in a RTS game mainly depend on the availability of different 
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Figure 3: Schematic representation of dynamic script generation in Wargus 

 For a dynamic scripting implementation in Wargus, we must constrain the adaptive AI’s 
tactics selection process. Therefore, we divided the game into a small number of distinct game states. 

ach sta

onotonous behaviour, 

4.2 Weight Adaptation in Wargus 

ht n both an evaluation of the performance of the adaptive AI 
during the whole game (called the overall fitness), and between state changes (called the state fitness). 

E te corresponds to a unique knowledge base whose tactics can be selected by the dynamic 
scripting technique when the game is in that particular state. We distinguish Wargus game states 
according to types of available buildings (see Figure 2), which in turn determine the unit types that can 
be built and the technologies that can be researched. Consequently, state changes are spawned by 
tactics that create new buildings. Note that not all tactics include build actions.  
 Dynamic scripting starts by selecting tactics for the first state. When a tactic is selected that 
spawns a state change, tactics will then be selected for the new state. To avoid m
each tactic is restricted to be selected only once per state. Tactic selection continues until either a total 
of N tactics are selected (N=100 was used for the experiments) or until a final state was reached. The 
value for N was determined during initial experiments: it was set sufficiently high so that the adaptive 
game AI almost always reached the final state in which it possessed all relevant buildings. For this 
final state, another M tactics are selected (M=20 was used for the experiments), before the script moves 
into a repeating cycle (called the ‘attack loop’), which continuously initiates attacks on the opponent 
civilizations. The dynamic script generation process is illustrated in Figure 3. 

Weig  updates in Wargus are based o

As such, the weight-updating function is based on a combination of state fitness and overall fitness. 
Using both evaluations for weight updating increases the learning mechanism’s efficiency (Manslow, 
2004). The overall fitness function F for player d controlled by dynamic scripting (henceforth called 
the dynamic player) yields a value in the range [0,1]. It is defined as:  
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In Equation 2, Sd,x represents the score of the dynamic player after state x, and S ,  represents the score 
f the dynamic player’s opponent after state

reflect the relative strength of the two opposing players. For Wargus, we defined the score Sx for player 
x as: 

er of points awarded for training armies and constructing buildings). We prioritize military points 
ecause experiences indicate

nts. 

 
In Equat t e new wei ue, W e cu nt weight value before the update, P is the 
maximum pe  e m weight value, Wmin is the minimum 
weight v  is the overall fitness of y ami i is the state fitness for the dyna  
player in stat a ritizes state performance over overall 
erformance because, even i e is lost, we w  to prevent tactics from being punished (too 

at the AI designers who are responsible for encoding 
the knowledge bases overlook certain interactions between game actions. Consequently, the 
incorporated domain knowledge may be sub-optimal, resulting in a weak or easily defeatable game AI. 

sti  is an impossible task for an AI designer, especially given 
the short amount of time available for AI tuning. An offline learning mechanism can test out many 

o x
o  x. The scoring function is domain-dependent, and should 

 xxx BMS 3.07.0 +=         (3) 

In Equation 3, Mx represents the military points for player x (i.e., the number of points awarded for 
killing units and destroying buildings), and Bx represents the building points for player x (i.e., the 
numb
b  that these are a better indication for the success of tactics than building 
poi
 After each game, the weights of all the employed tactics are updated. The weight-updating 
function translates the fitness functions into weight adaptations for the tactics in the script. The weight-
update function W for the dynamic player is defined as:  
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5 Evolutionary Algorithm in Wargus 

For complex games such as Wargus, it is likely th

Te ng every combination of game actions

more AI variations than an individual developer can (Chan et al., 2004). In this section, we explain the 
process of evolving domain knowledge for RTS games using an evolutionary algorithm (EA). The goal 
of the EA in Wargus is to use offline learning to discover tactics that can be used to defeat static (i.e., 
non-adaptive) opponent strategies. In the following subsections, we describe the encoding of the 
chromosome (5.1), the fitness function (5.2), and the genetic operators (5.3). 

{ }

{ },
1

7.0
1 

3 . 0 min max

min

⎪ 
⎪ 
⎩ 

⎪ 
⎨ 

≥

7.03 . 0 , max  ⎪ 
⎧ 

⎠

⎞
⎜ 
⎝ 
⎛ 

−
−

+
− 
− 

+ 

<
⎠

⎞
⎜ 
⎝ 
⎛ −

−
−

− bFPPW W org 
FbFb i

= 
bFWR

b
bF

R
b 
b F W 

bbW 
i

org 
)4(

 



 
 
 

 

 Start State 1 State 2 End

State marker Gene x.1 Gene x.2 Gene x.n

State m⋅⋅⋅

⋅⋅⋅

Chromosome 

State 

Gene ID Parameter 1 Parameter p⋅⋅⋅Gene Parameter 2

Start S C1 ⋅⋅⋅ 2 5 def B S E 8 R 15 B4 3 S 

State number x

1 3 4 

Gene 1.1 Gene 1.2 Gene 3.1 Gene 3.2 Gene 3.3 

State 1 State 3 

Tactic for state 1 Tactic for state 3 

Figure 4: Design of a chromosome to store game AI for Wargus. 

5.1 Encoding 

EA works with a population of chromosomes (in our experiments we use a population of size 50, 
which proved sufficient during preliminary experiments to rapidly discover a variety of strong tactics), 
each of which represents a static strategy. Figure 4 shows the chromosome’s design. The chromosome 
is divided into the 20 states as defined earlier (see Figure 2). States include a state marker followed by 
the state number and a series of genes. Each gene in the chromosome represents a game action. Four 
different gene types exist, corresponding to the available actions in Wargus, namely (1) build genes, 
(2) research genes, (3) economy genes, and (4) combat genes. Each gene consists of a gene ID that 
indicates the gene’s type (B, R, E, and C, respectively), followed by values for the parameters needed 
by the gene. Chromosomes for the initial population are generated randomly. A partial example 
chromosome is shown at the bottom of Figure 4. 

5.2 Fitness Function 

To measure the success of a chromosome, we used the following fitness function F for the dynamic 
player d (controlled by an evolved chromosome), which yields a value in the range [0,1]: 
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In Equation 5, Md represents the military points for the dynamic player, Mo the military points for the 
dynamic player’s opponent, and b is the break-even point. Ct represents the game cycle (i.e., the time it 
took before the game is lost by one of the players, or the game was aborted because time ran out). Cmax 
represents the maximum game cycle (i.e., the longest time a game is allowed to continue). When a 
game reaches the end cycle and neither army has been defeated, scores at that time are measured and 
the game is aborted. The factor Ct / Cmax ensures losing chromosomes that play a long game are 
awarded higher fitness scores than losing chromosomes that play a short game. Our goal is to generate 
a chromosome with a fitness exceeding a target value. When such a chromosome is found, the 
evolution process ends. This is the fitness-stop criterion. We set the target value to 0.70, which 
represents a clear victory for the dynamic player controlled by the evolved strategy. Since there is no 
guarantee that a chromosome exceeding the target value will be found, the evolution process also ends 
after it has generated a maximum number of chromosomes. This is the run-stop criterion. We set the 
maximum number of solutions to 250. The choices for the fitness-stop and run-stop criteria were 
determined during preliminary experiments. 

 



 
 
 

 

Parent 1: Start State 1 State 2 State 6 State 8 State 12 State 13 State 16 State 19 State 20 End 
       
Child: Start State 1 State 2 State 6 State 8 State 12 State 13 State 16 State 19 State 20 End 
           
Parent 2: Start State 1 State 3 State 4 State 8 State 12 State 13 State 14 State 17 State 20 End 

Figure 5: Example of a state crossover 

5.3 Genetic Operators 

Relatively successful chromosomes (as determined by a fitness function) are allowed to breed. To 
select parent chromosomes for breeding, we used size-3 tournament selection (Buckland, 2004). This 
method prevents early convergence and is computationally fast. Newly generated chromosomes 
replace existing chromosomes in the population, using size-3 crowding (Goldberg, 1989). To breed 
new chromosomes, we implemented four genetic operators. By design, all four ensure that a child 
chromosome always represents legal game AI. The four genetic operators take into account activated 
genes, which are genes representing game actions that were executed when fitness was assessed. Non-
activated genes are irrelevant to the chromosome. If a genetic operator produces a child chromosome 
that is equal to a parent chromosome for all activated genes, the child is rejected and a new child is 
generated. The four genetic operators are the following: 
 
1. State Crossover selects two parents, and copies states from either parent to the child 

chromosome. State crossover is controlled by “matching states”. A matching state is a state that 
exists in both parent chromosomes. Figure 2 makes evident that, for Wargus, there are always at 
least four matching states, namely state 1, state 12, state 13, and state 20, i.e., the player always 
passes through these 4 states (unless the game ends prematurely). State crossover will only be 
used when there are least three matching states with activated genes. A child chromosome is 
created as follows. States are copied from the first parent chromosome to the child chromosome, 
starting at state 1 and working down the chromosome. When there is a state change to a matching 
state, there is a 50% probability that from that point on, the role of the two parents is switched, and 
states are copied from the second parent. When the next state change to a matching state is 
encountered, again a switch between the parents can occur. This continues until the last state has 
been copied. The process is illustrated in Figure 5. In the figure, parent switches occur at state 8 
and state 13. 

 
2. Gene Replace Mutation selects one parent, and replaces economy, research or combat genes with 

a 25 percent probability. It is allowed to replace a gene of a certain type with a different gene type 
(e.g., it is allowed to replace a research gene with a combat gene). Building genes are excluded, 
both for and as replacement, because these could spawn a state change and thus could possibly 
corrupt the chromosome. 

 
3. Gene Biased Mutation selects one parent and mutates parameters for existing economy or 

combat genes with a 50 percent chance. The mutations are executed by adding a random integer 
value in the range [–5, 5]. 

 
4. Randomization generates a random new chromosome. 
 
Randomization had a 10 percent chance of being selected during evolution. The other genetic operators 
had a 30 percent chance. With our randomization genetic operator and relatively high mutation and 
crossover rates, we stimulate diversity in the population in order to broadly search the enormous space 
of possible strategies in the Wargus game, in effect hoping to find a wide variety of different tactics. 

 



 
 
 

 

6 Performance Evaluation of Dynamic Scripting in Wargus 

We evaluated the performance of dynamic scripting under three conditions: using knowledge bases 
that were (1) manually acquired, (2) semi-automatically acquired, and (3) automatically acquired. We 
evaluated the performance of these three knowledge acquisition approaches by letting the computer 
play the game against itself. One of the two opposing players was controlled by dynamic scripting (the 
dynamic player), while the other was controlled by a static script (the static player). Each game ended 
when of the players was defeated, or when a certain period of time had elapsed. If the game ended due 
to the time restriction, the player with the highest score (calculated using Equation 3) was considered 
to have won. After the game, the knowledge bases were adapted and used in the next game. A 
sequence of 100 games constituted one test. We tested four strategies for the static player, namely the 
SBLA, LBLA, SR, and KR (introduced in Section 3.1). 
 To quantify the relative performance of the dynamic player against the static player, we used 
the randomization turning point (RTP), which is measured as follows. After each game, a 
randomization test (Cohen 1995; pp. 168–170) was performed using the overall fitness values over the 
last ten games, with the null hypothesis that both players are equally strong. The dynamic player was 
said to outperform the static player if the randomization test concluded that the null hypothesis can be 
rejected with a 90 percent probability in favour of the dynamic player. RTP is the number of the first 
game in which the dynamic player statistically outperforms the static player. A low RTP value 
indicates good efficiency for dynamic scripting. 
 In the following sub-sections, we will describe the process for encoding the knowledge bases 
and the results for dynamic scripting using these knowledge bases. 

6.1 Evaluation of the Manual Approach 

For the first approach, we manually encoded the knowledge bases from scratch. The manually encoded 
(ME) knowledge bases consisted of 50 higher-level tactics, each consisting of a single atomic game 
action (e.g., constructing a blacksmith). Tactics can be classified into four basic categories, (1) build 
tactics for constructing buildings (12 tactics), (2) research tactics for acquiring new technologies (9 
tactics), (3) economy tactics for stimulating resource gathering (4 tactics), and (4) combat tactics for 
offensive and defensive military operations (25 tactics). The tactics were designed based on the 
domain knowledge found in strategy guides for Warcraft II™ and our ‘common sense’ of RTS games. 
A typical tactic in the knowledge bases allows the dynamic player to launch an attack at his opponent. 
The domain knowledge here lies in the fact that this tactic automatically trains the most advanced units 
available. Most strategy guides indicated that in Warcraft II™ it is advisable to always attack with the 
most advanced units available, e.g., a knight can slaughter a group of soldiers. Another form of built-in 
domain knowledge is incorporated in the building tactics. According to most strategy guides, it is 
important to build more than one barrack. On the other hand, it doesn’t really make sense to build more 
than one blacksmith, so we prevent the AI from doing this. We expected it to be crucial to regularly 
launch firm attacks and to have a steady defensive line at all times. For that reason half the tactics 
inserted in the knowledge bases were military tactics. 
 We set P to 175, R to 200, Wmax to 1250, Wmin to 25 and b to 0.5. The results of the evaluation 
of dynamic scripting using the ME knowledge bases in Wargus are displayed in Table 2. The columns 
of the table represent, from left to right: (1) the strategy used by the static player, (2) the number of 
tests, (3) the average RTP calculated over all tests, (4) the number of tests that did not find an RTP 
within 100 games, and (5) the average number of games won out of 100. 
 The results for the ME knowledge bases show relatively low values for the average RTPs for 
both the SBLA and the LBLA. Therefore, we conclude that the dynamic player efficiently adapts to 
these two opponent strategies. However, the dynamic player was unable to adapt to the SR and the KR 
within 100 games. The dynamic player only won on average 1 out of 100 games against the SR, and 1 
out of 50 games against the KR.  

 



 
 
 

 

 
Table 2: Evaluation of dynamic scripting in 
Wargus using the ME knowledge bases. 
 

ME knowledge bases 
Strategy Tests RTP >100 Won 
SBLA 31 50 0 60 
LBLA 21 49 0 60 

SR 10 - 10 1 
KR 10 - 10 2 

 
 We believe that the reason for the inferior performance of the dynamic player against the two 
rush strategies can be ascribed to the fact that these strategies are optimized and can only be defeated 
by very specific counter-tactics, with little room for variation. It is therefore very hard to design 
adaptive game AI that can defeat these rush strategies consistently. Another issue may be that the 
knowledge bases do not contain the appropriate knowledge to easily design game AI that can beat the 
rush strategies. For the next approach we investigated whether improving the domain knowledge 
improves the performance of dynamic scripting against the rush strategies.  

6.2 Evaluation of the Semi-Automatic Approach 

For our second approach we manually improved the ME knowledge bases based on offline evolved 
domain knowledge. We will refer to these knowledge bases as the manually improved (MI) knowledge 
bases.  
 
Evolving Domain Knowledge 
 
We employed the evolutionary algorithm described in Section 5 to discover strong tactics offline that 
can perform well against the manually designed strategies that the adaptive game AI was unable to 
beat using the ME knowledge bases, namely the SR and KR strategies (see Table 2). The results of ten 
tests against each of the two strong scripts are shown in Table 3. From left to right, the columns show 
(1) the strategy used by the static player, (2) the number of tests, (3) the average fitness value, and (4) 
the number of tests that ended because of the run-stop criterion. Based on the reported average fitness 
scores in Table 3, we conclude that the evolutionary algorithm was successful in discovering static 
strategies able to defeat the SR and KR scripts. All but two solutions had a fitness score higher than 
our desired target fitness, which represents a clear victory. 
 

Table 3: Evolutionary algorithm results. 
 

Strategy Tests Avg. >250 
SR 10 0.78 2 
KR 10 0.75 0 

 
Observations on the Evolved Chromosomes 
 
The following observations were made about the chromosomes evolved against the SR. The SR is used 
on a small map. As is usual for a small map, the game played by the chromosomes was always short. 
Most chromosomes included only two (out of nine possible) states with activated genes. We found that 
all ten chromosomes counter the SR with a soldier’s rush of their own. In eight out of ten 
chromosomes, the solutions included building a blacksmith very early in the game, which allows the 
research of weapon and armour upgrades. Then, the chromosomes selected at least two out of the three 
possible research advancements, after which large attack forces were created. These eight 
chromosomes succeeded because they ensure their soldiers are quickly upgraded to be more effective, 
before they attack. The remaining two chromosomes overwhelmed the static player with sheer 
numbers. 

 



 
 
 

 

 We made the following observations about the chromosomes evolved against the KR. First, 
the KR is used on a large map, which frequently resulted in longer games. As an indication of this, on 
average for each chromosome five or six states were activated. Against the KR, all chromosomes 
included training a large number of workers to be able to expand quickly. They also included boosting 
the economy by exploiting additional resource sites after setting up defences. Almost all chromosomes 
evolved against the KR worked towards the goal of quickly creating advanced military units, in 
particular knights. Seven out of ten chromosomes achieved this goal by employing a specific building 
order, namely a blacksmith, followed by a lumber mill, followed by a keep, followed by stables. Two 
out of ten chromosomes followed a building order that reached state 11 as quickly as possible (see 
Figure 2). State 11 is the first state that allows the building of knights. Surprisingly, in several 
chromosomes against the KR, the game AI employed many catapults. Warcraft II™ strategy guides 
generally consider catapults to be inferior military units, because of their high costs and considerable 
vulnerability. A possible explanation for the successful use of catapults is that, with their high 
damaging abilities and large range, they are particularly effective against tightly packed armies, such 
as groups of knights.  
 
Manually Improving the Knowledge bases 
 
We manually extracted strong tactics from the evolved chromosomes and incorporated these into the 
MI knowledge bases. Based on our observations we decided to create four new tactics for the 
knowledge bases, and to (slightly) change the parameters for several existing combat tactics.  
 The first new tactic was designed to be able to deal with the SR. The tactic contained the 
pattern that was observed in most of the evolved chromosomes against the SR, namely a combination 
of the building of a blacksmith, followed by the research of several upgrades, followed by the creation 
of a large offensive force. 
 The second tactic was designed to be able to deal with the KR. Against the KR, almost all 
evolved chromosomes aimed at creating advanced military units quickly. The new tactic checks 
whether it is possible to reach a state that allows the creation of advanced military units, by 
constructing one new building. If this is possible, the tactic constructs that building, and creates an 
offensive force consisting of the advanced military units. 
 The third tactic was aimed at boosting the economy by exploiting additional resource sites. In 
the evolved chromosomes, we discovered that exploitation of additional resource sites only occurred 
after a defensive force was built. The new tactic mimics this by preparing the exploitation of additional 
resource sites with the building of a defensive army. 
 The fourth tactic was a straightforward translation of the best chromosomes found against the 
KR. Simply all activated genes for each state were translated and combined in one tactic, and stored in 
the knowledge base corresponding to the state. 
 Besides the creation of the four new tactics, small changes were made to some of the existing 
combat tactics by changing the parameters to increase the number of units of types clearly preferred by 
the chromosomes, and to decrease the number of units of types avoided by the chromosomes. Through 
these changes, the use of catapults was encouraged. 
 
Results 
 
To empirically validate whether the changes to the ME knowledge bases resulted in an improved 
performance for dynamic scripting, we repeated the experiments, now using the MI knowledge bases. 
Table 4 summarizes the results. We set the values of the maximum reward and maximum penalty to 
400, to allow dynamic scripting to reach the boundaries of the weight values faster. The columns 
represent the same variables as used in Table 2. 
 

 



 
 
 

 

 
Table 4: Evaluation of dynamic scripting in 
Wargus using the MI knowledge bases. 
 

MI knowledge bases 
Strategy Tests RTP >100 Won 
SBLA 11 19 0 72 
LBLA 11 24 0 66 

SR 10 - 10 27 
KR 10 - 10 10 

 
A comparison of the results with the ME and MI knowledge bases show that the performance of 
dynamic scripting is considerably improved against all opponent strategies. Against the two balanced 
strategies, SBLA and LBLA, the average RTP is reduced by more than 50 percent. Against the two 
optimized strategies, the SR and the KR, the number of games won out of 100 has increased 
considerably. We conclude that the manual changes (based on evolved chromosomes against the KR 
and SR) to the ME knowledge bases improved performance, in particular because during the 
experiments we observed that dynamic scripting assigned the new tactics large weights. However, 
despite these improvements, dynamic scripting still cannot statistically outperform the two rush 
strategies. 

6.3 Evaluation of the Automatic Approach 

Both the manual and semi-automatic approaches can be very costly in terms of time. For our third 
approach, we completely automated the process of generating knowledge bases. These knowledge 
bases are henceforth called the automatically evolved (AE) knowledge bases. The steps for 
automatically generating knowledge bases are schematically illustrated in Figure 6. 
 
Evolving Domain Knowledge 
 
The first step in the automatic approach (EA) involves using the evolutionary algorithm described in 
Section 5 to search for counter-strategies that defeat clearly distinguishable opponent strategies. The 
opponent strategies (i.e., game scripts) are provided to EA as a training set, the only manual input 
required. This training set contains (manually designed) static scripts and (automatically generated) 
evolutionary scripts. Static scripts are the default scripted opponents typically provided with early 
versions of the game engine to record the strategies often employed by human players while testing 
alpha and/or beta versions of the game engine. In contrast, an evolutionary script is a previously 
evolved chromosome that will be used as an opponent strategy to evolve new chromosomes. Static 
scripts have the advantage that they are usually of high quality (since they are recorded from human 
player strategies). In contrast, evolutionary scripts have the advantage that they can be generated 
completely automatically. Our training set includes the default-scripted opponents provided with the 
Stratagus engine (strategies 1 to 4 introduced in Section 3.1), and the evolutionary scripts (36 
strategies). The output of the evolutionary algorithm consists of a set counter-strategies for defeating 
the scripts in the training set.  

 Figure 6: Schematic representation of the automatic knowledge acquisition process 

 



 
 
 

 

 
Automatically Improving the Knowledge Bases 
 
The second step (KT) automatically transfers the domain knowledge stored in the evolved 
chromosomes to the knowledge bases that are used by the adaptive AI mechanism, in this case 
dynamic scripting. Unlike the semi-automatic approach discussed in Subsection 6.2, here we 
automatically recognize and extract tactics from the evolved chromosomes. The applicability of 
possible tactics during a game mainly depend on the available units and technology, which in RTS 
games typically depend on the buildings that the player possesses. Therefore, we can distinguish tactics 
based on the game states for Wargus as illustrated in Figure 2. All genes (i.e., the sequence of all game 
actions) grouped in an activated state (an activated state includes at least one activated gene) in a 
chromosome are considered to be a single tactic. The example chromosome in Figure 4 illustrates two 
potential tactics. The first tactic for state 1 includes genes 1.1 and 1.2. This tactic will be inserted into 
the knowledge base for state 1. Because gene 1.2 spawns a state change, the next genes will contribute 
to a different tactic for a different state. 
 
Results 
 
We evolved 40 chromosomes against the strategies provided in the training set. The EA was able to 
find a strong counter-strategy against each strategy in the training set. All chromosomes had a fitness 
score higher than 0.7 (as calculated with Equation 5), which represents a clear victory. In the KT step, 
the 40 evolved chromosomes produced 164 tactics that were added to the AE knowledge bases. 
 We repeated the experiments with dynamic scripting using the AE knowledge bases. The 
experimental parameters for dynamic scripting were unchanged. Table 5 summarizes the results. 
Dynamic scripting with the AE knowledge bases outperforms both balanced strategies before any 
learning occurs (e.g., before weights are adapted). In previous tests against the SR (using the ME and 
MI knowledge bases), dynamic scripting was unable to find an RTP. In contrast, dynamic scripting 
using the AE knowledge bases recorded an average RTP of 51 against the SR. 
 

Table 5: Evaluation of dynamic scripting in 
Wargus using the AE knowledge bases. 
 

AE knowledge bases 
Strategy Tests RTP >100 Won 
SBLA 11 10 0 85 
LBLA 11 11 0 76 

SR 21 51 0 29 
KR 10 - 10 13 

7 Discussion 

Based on a comparison of the results for the three competing approaches, illustrated in Figures 7 and 8, 
we may conclude that the fully automated approach obtained the best results for dynamic scripting. 
With the AE knowledge bases, RTP values against all strategies except KR have substantially 
decreased, and on average more games are won. We believe that this increased performance, compared 
to the other two knowledge acquisition approaches, occurred for at least three reasons.  
 The first reason is that the AE knowledge bases were not restricted to the (potentially poor) 
domain knowledge provided by the designer. We were responsible for manually encoding and 
manually improving the domain knowledge, and we hardly consider ourselves domain experts. In 
particular, we expect performance for the manual approach to increase when allowing an expert to 
encode the domain knowledge. However, manually encoding knowledge bases for complex domains 
such as Wargus is very challenging. A domain expert alone might not generate satisfying results. 
Being an expert in a particular domain does not imply that this person is also qualified to formalize the 
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Figures 7 and 8: Figure 7 (on the left) and Figure 8 (on the right) illustrate respectively the 
recorded average RTP values and the average number of games won out of a 100 for the three 
competing approaches (for each group of three the left represents the manual approach, the 
middle the semi-automatic approach and the right bar the automatic approach). The x-axis lists 
the opponent strategies. The y-axis in Figure 7 represents the average RTP value. A low RTP 
value indicates good efficiency for dynamic scripting. The five bars that reached 100 represent 
runs where no RTP was found (e.g., dynamic scripting was unable to statistically out-perform the 
specified opponent). The y-axis in Figure 8 represents the average number of games won out of a 
100 by dynamic scripting. 

Average RTP Average Number of Games Won 

knowledge in a way that a program can successfully use it. This task is typically tackled by a 
knowledge engineer.  
 The second reason is that the AE knowledge bases include mostly tactics consisting of 
multiple game actions, whereas the tactics in both the ME and MI knowledge bases mostly consisted 
of single atomic actions. In the latter part of Section 3.2, we explained that we constrained the action 
space by employing a high-level control over the AI in the form of scripted game actions. Knowledge 
bases consisting of compound tactics (i.e., an effective combination of fine-tuned game actions) further 
reduce the search complexity in Wargus by providing an even higher-level control over the AI, 
allowing dynamic scripting to achieve relatively fast adaptation against many static opponents.  
 The third reason is that the automated knowledge acquisition approach is the only one that 
actually receives feedback from the game engine. An analogy can be made with wrapper and filter 
models for feature selection (Kohavi & John, 1997). Wrapper models select features by testing 
tentative selections on the targeted prediction algorithm (e.g., a classifier), while filter models do not 
(e.g., a filter model might select features according to their mutual information gain). Thus, while filter 
models have lower computational complexity, they employ a different bias for feature selection than 
the target algorithm itself. Similarly, our AE approach uses expensive game play to acquire tactics. 
While the manual and semi-automatic approaches have lower computational costs, there is no 
guarantee that their tactic selection biases match the biases of the game engine itself. 
 
The Issue of Generalization 
 
The automatic approach produced the best results with dynamic scripting. However, it is possible that 
the resulting knowledge bases from the AE process were tailored against specific game AI strategies 
(i.e., the ones received as input for the AE process). In particular, scripts 1 to 4 (SBLA, LBLA, SR, 
and KR) were both in the training and test set. We decided to run additional experiments against scripts 
that were not in the training set. As part of a game programming class at Lehigh University, students 
were asked to create Wargus game scripts for a tournament. To qualify for the tournament, students 
needed to generate scripts that defeat scripts 1 to 4 in a predefined map. The top four competitors in the 
tournament (SC1-SC4) were used for testing against dynamic scripting. During the tournament, we 
learned that the large map was unbalanced (i.e., one starting location for a player was superior over the 
other starting locations). Therefore, we tested the student scripts on the small map. 

 



 
 
 

 

 Dynamic scripting using the AE knowledge bases was played against the new student scripts. 
The experimental parameters for dynamic scripting were unchanged. Table 6 summarizes the results 
against the student scripts. These results were encouraging. Only the champion script puts up a good 
fight; the others were already defeated from the start. We may conclude that the AE knowledge bases 
include generalized tactics, since dynamic scripting performs well against four independently created 
scripts that were not involved in the training set for the evolutionary algorithm. 
 

Table 6: Evaluation of dynamic scripting using the 
AE knowledge bases against the student scripts. 
 

AE knowledge bases 
Strategy Tests RTP >100 Won 

SC1 10 83 5 27 

SC2 10 19 0 61 

SC3 10 12 0 84 

SC4 10 20 0 73 

8 Conclusions and Future Work 

We detailed three alternatives for acquiring high-quality domain knowledge used by adaptive game AI: 
manual, semi-automatic, and automatic. We first introduced our test environment Wargus, a faithful 
clone of the Warcraft II™ game, whose characteristics are typical of RTS games. We then discussed 
dynamic scripting, an adaptive game AI technique. We explained that domain knowledge is a crucial 
factor to the performance of dynamic scripting. We showed that, in our experiments, for the task of 
winning RTS games dynamic scripting’s performance is best when using the automatic knowledge 
acquisition approach. The automatic approach requires as input a collection of pre-defined scripts. 
These are readily available in typical commercial games from various sources, including scripts used 
for testing the game engine (e.g., scripts that record human playing strategies). We also showed that 
the automatically generated knowledge bases included strong, generalized tactics that can perform well 
against many different opponent strategies. We therefore draw the following conclusion from our 
experiments: It is possible to automatically generate high-quality domain knowledge that can be used 
to generate strong adaptive AI opponents in RTS games.  
 Our future work extends the discussed research in several directions. In dynamic scripting we 
are exploring ways not only to automatically generate knowledge bases, but also ways to automatically 
discover orderings and relationships between different knowledge elements. In the area of knowledge 
transfer, in the TIELT (2006) project, we are investigating ways to reuse previously discovered 
knowledge in new situations. For example, in preliminary research, Ponsen et al. (2006b) learned a 
navigation policy for a worker unit in a RTS game that generalized to unseen situations. Finally, since 
the ultimate goal of most games is to entertain human players, we are looking ways to create game AI 
that adapts to the entertainment value of game AI, rather than its effectiveness.  
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