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Abstract

This paper proposes a mechanism for learning
a best-response strategy to improve opponent in-
telligence in team-oriented commercial computer
games. The mechanism, called TEAMZ2, is an ex-
tension of the TEAM mechanism for team-oriented
adaptive behaviour explored ifBakkes et al,
2004 and focusses on the exploitation of rele-
vant gameplay experience. We compare the per-
formance of the TEAM2 mechanism with that of
the original TEAM mechanism in simulation stud-
ies. The results show the TEAM2 mechanism to
be better able to learn team behaviour. We argue
that the application as an online learning mecha-
nism is hampered by occasional very long learning
times due to an improper balance between exploita-
tion and exploration. We conclude that TEAMZ2 im-
proves opponent behaviour in team-oriented games
and that for online learning the balance between ex-
ploitation and exploration is of main importance.

on which a best-response stratd@armel and Markovitch,
1997 is formulated. We will ague thdtest-response learn-
ing of team-oriented behaviour can be applied in games. We
investigate to what extent it is suitable for online learning.

The outline of this paper is as follows. Section 2 discusses
team-oriented behaviour (team Al) in general, and the ap-
plication of adaptive team Al in games in particular. The
TEAM2 best-response learning mechanism is discussed in
section 3. In section 4, an experiment to test the performance
of the mechanism is discussed. Section 5 reports our findings,
and section 6 concludes and indicates future work.

2 Adaptive Team Al in Commercial
Computer Games

We defined adaptive team Al as the behaviour of a team of
adaptive agents that competes with other teams within a game
environmentBakkeset al., 2004. Adaptive team Al consists

of four components: (1) the individual agent Al, (2) a means
of communication, (3) team organisation, and (4) an adaptive

mechanism.

1 Introduction

In recent years, commercial computer game developers ha
emphasised the importance of high-quality game oppone
behaviour.Online learningtechniques may be used to signif-
icantly improve the quality of game opponents by endowing
them with the capability of adaptive behaviour (i.e., artifi-
cial creativity and self-correction). However, to our knowl-
edge online learning has never been used in an actual co
mercial computer game (henceforth called ‘game’). In ear
lier work [Bakkeset al,, 2004, we have proposed a mecha-
nism named TEAM (Team-oriented Evolutionary Adaptabil-
ity Mechanism) for team-oriented learning in games. Ou
experiments revealed TEAM to be applicable to commerci
computer games (such as Quake-like team-games). Unfort
nately, the applicability is limited due to the large variation in
the time needed to learn the appropriate tactics.

This paper describes our attempts to improve the efficienc
of the TEAM mechanism usingmplicit opponent models
[van den Heriket al, 2004. We propose an extension of
TEAM called TEAM2. The TEAM2 mechanism employs
a data store of a limited history of results of tactical team
behaviour, which constitutes an implicit opponent model,

Figure 1: Screenshot of the gar@wAKE 1ll. An agent fires
at a game opponent.



The first three components are required for agents to e3 Best-Response Learning of Team-oriented
tablish team cohesion, and for team-oriented behaviour to  Behaviour
emerge. The fourth component is crucial for improving the ) ) o .
quality of the team during gameplay. The next sub-sectiond he design of TEAM2, aimed at efficiently adapting op-

discuss a mechanism for adaptive team Al, and its perforPonent behaviour, is based on a best-response learning ap-
mance. proach (instead of evolutionary learnifg)This section dis-

cusses the properties of the enhanced design: (1) a symbiotic

learning concept, (2) learning a best-response team strategy,

2.1 The Team-oriented Evolutionary Adaptability (3) a state-transition-based fitness function, and (4) a scaled
Mechanism (TEAM) roulette-wheel selection. The populauake Il CTF game
[van Waveren and Rothkrantz, 2Q0is used for illustrative

The observation that humans players prefer to play again§turposes.

other humans over players against artificial opponévas L i

Rijswijck, 2004, led us to design the Team-oriented Evolu- 3-1 ~ Symbiotic Learning

tionary Adaptability Mechanism (TEAM). TEAM is an on- Symbiotic learning is a concept for learning adaptive behav-
line evolutionary learning technique designed to adapt théour for a team as a wholérather than learning adaptive be-
team Al of Quake-like games. TEAM assumes that the behaviour for each individual). The TEAM mechanism suc-
haviour of a team in a game is defined by a small number oéessfully applied the concept for the purpose of adapting op-
parameters, specified per game state. A specific instance pbnent behaviour in team-oriented games. The onset of the
team behaviour is defined by values for each of the paramedesign of TEAM was the observation that the game state of
ters, for each of the states. TEAM is defined as having theeam-oriented games can typically be represented as a finite
following six properties: 1) state-based evolution, 2) statestate machine (FSM). By applying an instance of an adaptive
based chromosome encoding, 3) state-transition-based fitneggchanism to each state of the FSM, one is able to learn rela-
function, 4) fitness propagation, 5) elitist selection, and 6)}tively uncomplicated team-oriented behaviour for the specific
manually-designed initialisatidiBakkeset al., 2004. state. Cooperatively, from all instances of the applied adap-

For evolving successful behaviour, typical evolutionarytive mechanism, relatively complex team-oriented behaviour
learning techniques need thousands of trials (or more). Ther&merges in a computationally fast fashion. The concept of
fore, at first glance such techniques seem unsuitable for th&ymbiotic learning is illustrated in figure 2. The figure exem-
task of online learning. Laird200d is skeptical about the Plifies how instances of an adaptive mechanism cooperatively
possibilities offered by online evolutionary learning in games learn team-oriented behaviour, which is defined as the combi-
He states that, while evolutionary algorithms may be aphation of the local optima for the states (in this example there
plied to tune parameters, they are “grossly inadequate whedfe four states).
it comes to creating synthetic characters with complex be- An instance of the adaptive mechanism automatically gen-
haviours automatically from scratch”. In contrast, the resultserates and selects the best team-configuration for the specific

achieved with the TEAM mechanism in the ga@eAKE Il state. A team-configuration is defined by a small number of
show that it is certainly possible to use online evolutionaryParameters which represent team behaviour (e.g. one team-
learning in games. configuration can represent an offensive tactic, whereas an-

other team-configuration can represent a defensive tactic).

2.2 Enhancing the Performance of TEAM

TEAM2 instance for state #1

Spronck[2009 defines four requirements for qualitatively
acceptable performance were defined: speed, robustness, ef-

TEAM2 instance for state #2

Local optimum
for state #2

fectiveness, and efficiency. For the present study, the require-
adopt effective behaviour. Applied to tiUAKE Il capture-

the-flag (CTF) team game, the TEAM mechanism requires

an hour, the TEAM mechanism lacks efficiency to enable suc

Cessful On“ne |earn|ng |n games SUCWKE ||| . TEAM2 instance for state #3 TEAM2 instance for state #4
learning is doubtfu[Spronck, 200k Therefore, the design

of TEAM needs to be enhanced with a different approach 1since TEAM2 is not inspired by evolutionary algorithms, we

ment of efficiency is of main relevance. Efficiency is defined
as the learning time of the mechanism. In adaptive team Al, opimal siateay
efficiency depends on the number of learning trials needed to for al states
about2 hours of real-time play to significantly outperform
the opponent. SincQUAKE |l matches take on average half
When one aims for efficient adaptation of opponent be- _ o _
haviour in games, the practical use of evolutionary online Figure 2: Symbiotic learning.
to learning team-oriented behaviour. The enhanced desigmat the reader imagine that the letter ‘E’ is an abbreviation for ‘Ex-
named TEAMZ2, is discussed next. ploitative’ (instead of ‘Evolutionary’).



3.2 Learning a Best-Response Team Strategy

Adaptation to the opponent takes place via an implicit oppo
nent model, which is built and updated when the team game
is in progress. Per state of the game, the sampled data merely
concerns the specific state and represents all possible team-
configurations for the state. The implicit opponent model
consists of historic data of results per team-configuration
per state. An example of the structure of an implicit oppo-
nent model is given in table 1. In the example, the team-
configuration represents the role division of a team with four
members. Each of which has either an offensive, a defensi
or an roaming role. The history can anything from a store of
fitness values, to a complex data-structure.

(1)
Both flags
at their base

+ friendly flag recovered by team
--opponent carries flag to his base (opponent scores)

++ flag carrier returns to base (friendly team scores)
- enemy flag recovered by opponent

enemy flag is returned by flag carrier (friendly team scores)++
enemy flag recovered by opponent -

3) > (4)
Enemy flag ) ( Both flags
stolen stolen

T+ friendly flag recovered by team
--opponent carries flag to his base (opponent scores)

Team configuration History Fitness Figure 3: Annotated finite state machine@bake Il CTF.
(0,0,4)| [0.1,0.6,...,0.5] 0.546 Highly beneficial and beneficial transitions are denoted with

(0,1,3)| [0.3,0.1,...,0.2] 0.189 “++" and “+" respectively, whereas detrimental and highly
. . . detrimental state transitions are denoted witif and “——"
respectively.

(4,0,0)| [0.8,06,...,0.9] 0.853

Table 1: Example of an implicit opponent model for a specific ) i
state of theQUAKE 111 capture-the-flag game. acknowledging that game opponent behaviour must be non-

degrading. In acknowledgement of the inherent randomness

On this basis, a best-response strategy is formulated whe?f & 9ame environment, the selection mechanism protects
the game transits from one state to another. For reasons §g@inst selecting inferior top-ranking team-configurations.

efficiency and relevance, only recent historic data are used

for the learning process. 4 Experimental Study of the TEAM2
3.3 State-transition-based Fitness Function Mechanism

The TEAM2 mechanism uses a fitness function based on state . . .
transitions. Beneficial state transitions reward the tactic thaf© assess the efficiency of the TEAM2 mechanism, we in-

caused the state transition, while detrimental state transitiorfée"Porated it in theQUAKE Ill CTF game. We performed
penalise it. To state transitions that directly lead to scoring (o €Xperiment in which an adaptive team (controlled by
losing) a point, the fitness function gives a reward (or penalty)l EAM2) is pitted against a non-adaptive team (controlled
of 4. Whereas to the other state transitions, the fitness func2y the QUAKE 111 team Al). In the experiment, the TEAM2
tion gives a reward (or penalty) of This ratio is empirically mechanism adz_;\pts the_ tactical behaviour of a team to the op-
decided by the experimenters. In figure 3, an example of arRONent. A tactic consists of a small number of parameters
notations on the FSM of th@UAKE 11l CTF game is given. which represent the offensive and defensive division of roles
Usually, judgement whether a state transition is beneficiaPf @gents that operate in the game.
or detrimental cannot be given immediately after the transi- The inherent randomness in tQUAKE 11l environment
tion; it must be delayed until sufficient game-observations argequires the learning mechanism to be able to successfully
gathered. For instance, if a state transition happens from adapt to significant behavioural changes of the opponent.
state that is neutral for the team to a state that is good for thBoth teams consist of four agents with identical individual
team, the transition seems beneficial. However, if this is im-agent Al, identical means of communication and an identical
mediately followed by a second transition to a state that is bateam organisation. They only differ in the control mechanism
for the team, the first transition cannot be considered benefemployed (adaptive or non-adaptive).
cial, since it may have been the primary cause for the second

transition. 4.1 Experimental Setup

3.4 Scaled Roulette-Wheel Selection An experimental run consists of two teams playQQAKE

The best-response learning mechanism selects the preferréldl CTF until the game is interrupted by the experimenter.
team-configuration by implementing a roulette wheel methodOn average, the game is interrupted after two hours of game-
[Nolfi and Floreano, 2040 where each slot of the roulette play, since the original TEAM mechanism typically requires
wheel corresponds to a team-configuration in the statetwo hours to learn successful behaviour, whereas the TEAM2
specific solution space, and the size of the slot is proportionahechanism should perform more efficiently. We performed
to the obtained fitness-value of the team-configuration. Th&€0 experimental runs with the TEAM2 mechanism. The re-
selection mechanism quadratically scales the fithess valueslts obtained will be compared to those obtained with the
to select the higher-ranking team-configurations more oftenTEAM mechanism15 runs, se¢Bakkeset al., 2004).



4.2 Performance Evaluation

To quantify the performance of the TEAM2 mechanism, we .,
determine the so-called turning point for each experimental =
run. The turning point is defined as the time step at which the =
adaptive team takes the lead without being surpassed by the’
non-adaptive team during the remaining time steps.

We defined two performance indicators to evaluate the ef- =
ficiency of TEAM2: the median turning point and the mean -
turning point. Both indicators are compared to those obtained
with the TEAM mechanism. The choice for two indicators is  «
motivated by the observation that the amount of variance in- =

0

fluences the performance of the mechan[8akkeset al,, N N T N T
2004.

To investigate the variance of the experimental results, we
defined an outlier as an experimental run which needed morgigure 4: lllustration of typical experimental results obtained
than91 time steps to acquire the turning point (the equivalentwith the TEAM2 mechanism. The graph shows the lead of
of two hours). the adaptive team over the non-adaptive team as a function of

the number of scored points.
4.3 Results

In table 2 an overview of the experimental results of the

TEAM2 experiment is given. It should be noted that in two tjg|ly, the adaptive team attains a lead of approximately zero.
tests, the run was prematurely interrupted without a tumingat the turning point (labeled 38 in figure 4), the adaptive

point being reached. We incorporated these two test as havingam takes the lead over the non-adaptive team. Addition-
a turning as high as the highest outlier, which is 358. Interimgly, the graph reveals that the adaptive team outperforms the

results indicate that, should the runs be not prematurely innon-adaptive team without any significant degradation in its
terrupted, their turning points would have been no more thamerformance.

half of this value.
The median turning point acquired is 38, which is signif-
icantly lower that the median turning point of the TEAM

mechanism, which is 54. The mean turning point acquiredry,, experimental results show that TEAM2 is able to suc-

with TEAM2, however, is significantly higher than the mean . : :

) . ; 1 ) cessfully adapt game opponent behaviour in an highly non-
turning point acquired with the TEAM mgche}nlsm (102 anddeterministic environment, as it challenged and defeated the
71, respectively). The percentage of outliers in the total n“mfine-tunedQUAKE Il team Al

ber of tests is about I.H , th f th tli _ .
hzg(;ig?]isfiialliﬁy ?n%rggggd fo?v'l\'lg\fl\r/lz € range orihe outliers The results listed in table 1 show that the TEAM2 mecha-
: Cpism outperforms the TEAM mechanism in terms of the me-

To illustrate the course of an experimental run, we plotte Mian turni int. H h wrni ntis |
the performance for a typical run in figure 4. The perfor- 21an turning point. However, thé mean turning point Is iarger

mance is expressed in terms of the lead of the adaptive tearfp! TEAM2 than for TEAM, which is explained by the in-

which is defined as the score of the adaptive team minus thig €a5ed range of the outliers. The median turning point indi-

) : . cates that the TEAM2 best-response learning mechanism is
score of the non-adaptive team. The graph shows that, Ir]anore efficient than the TEAM online evolutionary learning

mechanism, as the adaptation to successful behaviour pro-

4.4 Evaluation of the Results

TEAM  TEAMZ gresses more swiftly than before; expressed in time only 48
# Experiments Total 15 20 minutes are required (as compared to 69 minutes).
Outliers 4 6 Therefore, we may draw the conclusion that the TEAM2
Outliers in% 27% 30% mechanism exceeds the applicability of the TEAM mecha-
nism for the purpose of learning in games. The qualitative
Mean 71.33  102.20 acceptability of the performance is discussed next.
Std. Deviation 44.78 125.29
Std. Error of Mean 11.56 28.02
_ 5 Discussion
Median 54 38
Range 138 356 Our experimental results show that the TEAM2 mechanism
Minimum 20 2 succeeded in enhancing the learning performance of the
Maximum 158 358 TEAM mechanism with regard to its median, but not mean,

) . efficiency. In sub-section 5.1 we give a comparison of the
Table 2: Summary of experimental results. With TEAM2 the |earned behaviour of both mechanisms. Sub-section 5.2 dis-
median turning point is significantly lower, yet, outliers have cysses the task of online learning in a commercial computer
a negative effect on the mean turning point. game environment with regard to the observed outliers.



5.1 Comparison of the Behaviour Learned by
TEAM and TEAM2 1

Performance histogram of TEAM

In the original TEAM experiment we observed that the adap-
tive team would learn so-called “rush” tactics. Rush tac-
tics aim at quickly obtaining offensive field supremacy. We
noted that theQUAKE Ill team Al, as is was designed by
the QUAKE Ill developers, uses only moderate tactics in
all states, and therefore, it is not able to courdny field
supremacy.

The TEAM2 mechanism is inclined to learn rush tactics
as well. Notably, the experiment showed that if the adap-
tive team uses tactics that are slightly more offensive than the
non-adaptive team, it is already able to significantly outper- = = T T T T e s o 2 a0 are w0 om0 e
form the opponent. Besides the fact that @ieakE |1l team Category
Al cannot adapt to superior player tactics (whereas an adap-
tive mechanism can), it is not sufficiently fine-tuned; for it
implements an obvious and easily detectable local-optimum.

Turning points
@
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w

N

Performance histogram of TEAM2
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5.2 Exploitation versus Exploration

~

o

In our experimental results we noticed that the exploita-
tive TEAM2 mechanism obtained a significant difference be-
tween the relatively low median and relatively high mean
performance, whereas the original, less exploitative, TEAM
mechanism obtained a moderate difference between the me-
dian and mean performance. This difference is illustrated
in figure 5. It reveals that the exploitative TEAM2 mecha-
nism obtained a significant difference between the relatively = = - = o s a0 o o a s
low median and relatively high mean performance, whereas category

the original, less exploitative, TEAM mechanism obtained a

moderate difference between the median and mean perfoﬁ'lgure 5: Histograms of the results of both the TEAM2 and

mance. TEAM experiment. The graphs show the number of turning

An analysis of the phenomenon revealed that it is dugoints as a function of the value of the turning point, grouped
to a well-known dilemma in machine learningCarmel by a category value df5.

and Markovitch, 1997 the exploitation versus exploration
dilemma. This dilemma entails that a learning mechanism re-
quires the exploration of derived results to yield successfub Conclusions and Future Work
behaviour in the future, whereas at the same time the mecha-
nism needs to directly exploit the derived results to yield suc-The TEAM2 mechanism was proposed as an enhancement
cessful behaviour in the present. Acknowledging the need fofg the novel Tactics Evolutionary Adaptability Mechanism
an enhanced effICIency, the emphaSIS of the TEAM2 meChq-TEAM), designed to impose adaptive behaviour on oppo-
nism lies on eXplOiting the data represented in a small amourﬁents in team-oriented games. The Origina| TEAM mecha-
of samples. nism is capable of unsupervised and intelligent adaptation to
In the highly non-deterministiQUAKE Ill environment, a the environment, yet, its efficiency is modest. From the ex-
long run of fitness values may occur that, due to chance, iperimental results of the best-response learning experiment,
not representative for the quality of the tactic employed. Ob-we drew the conclusion that the TEAM2 best-response learn-
viously, this problem results from the emphasis on exploitinging mechanism succeeded in enhancing the median, but not
the small samples taken from the distribution of all statesmean, learning performance. This reveals that in the cur-
To increase the number of samples, an exploration mechaent experimental setup the exploitation and exploration are
nism can be added. The TEAM online evolutionary learningnot sufficiently well balanced to allow efficient and effective
mechanism employed such an exploration mechanism with anline learning in an actual game. As the TEAM2 mecha-
fitness propagation technique, which led to loss of efficiencynism is easily able to defeat a non-adaptive opponent, we may
We tested several exploration mechanisms in TEAM2, whichtherefore conclude that the mechanism is suitable for online
we found also led to loss of efficiency. However, since itlearning in an actual game if, and only if, a balance between
is impossible to rule out chance runs completely, an onlinexploitation and exploration is found for that specific game.
learning mechanism must be balanced between an exploitdoreover, the TEAM2 mechanism can be used during game
tive and explorative emphasis. development practice to automatically validate and produce

Turning points
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Al that is not limited by a designer’s vision.

Future research should investigate how an effective balance
between exploitation of historic data and exploration of alter-
natives can be achieved. We propose to create a data store of
gameplay experiences relevant to decision making processes,
and use it to build an opponent model. Thereupon, game Al
can either predict the effect of actions it is about to execute,
or explore a more creative course of action.
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