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ABSTRACT 

 
Computer generated forces (CGFs) must display realistic 

behavior for tactical training simulations to yield an effective 

training experience. Tradionally, the behavior of CGFs is 

scripted. However, there are three drawbacks, viz. (1) 

scripting limits the adaptive behavior of CGFs, (2) creating 

scripts is difficult and (3) it requires scarce domain expertise. 

A promising machine learning technique is the dynamic 

scripting of CGF behavior. In simulating air combat 

scenarios, team behavior is important, both with and without 

communication. While dynamic scripting has been reported 

to be effective in creating behavior for single fighters, it has 

not often been used for team coordination. The dynamic 

scripting technique is sufficiently flexible to be used for 

different team coordination methods. In this paper, we report 

the first results on centralized coordination of dynamically 

scripted air combat teams, and compare these results to a 

decentralized approach from earlier work. We find that using 

the centralized approach leads to higher performance and 

more efficient learning, although creativity of the solutions 

seems bounded by the reduced complexity. 

 

INTRODUCTION 
 

Our point of departure is the problem of controlling 

computer generated forces (CGFs) in military training 

simulations. These CGFs need to exhibit realistic behavior 

for simulations to have the highest possible educational 

value. In the real world, military units often operate in teams, 

such as infantry fireteams, carrier battle groups, or air force 

flights. The coordination between team members is of 

specific interest to our research. In earlier work (Toubman, 

Roessingh, Spronck, Plaat, & Van den Herik, 2014), we 

investigated team coordination by using communication 

between CGFs. The CGFs then automatically learn team 

behavior, including the required elements of communication, 

using a machine learning technique called Dynamic 

Scripting (DS). 

 

DS is a reinforcement learning technique that tries to find 

optimal combinations of behavior rules in a rule base. Since 

DS works with predefined behavior rules, the learning 

process is more transparent than with, e.g., subsymbolic 

methods. In (Toubman et al., 2014), we took advantage of 

this transparency by implementing a communication scheme 

inside the behavior rules used by DS to study the resulting 

communication patterns. So, the DS algorithm would 

automatically discover which messages and responses led to 

winning behaviors. 

 

Our previous work required setting up to two concurrently 

learning agents, resulting in two instances of DS of which 

the learned rules were interdependent. This complicated 

interpreting the resulting rules and may have complicated 

rule convergence. To reduce the complexity of the setup, 

both computationally and for the human maintainer, in the 

current paper we investigate a setup with a single instance of 

DS. By using one instance of DS to control the agents, we 

are essentially transforming the agent system to a centralized 

system. The main research question of this paper is 

therefore: “Does using this centralized system actually 

reduce the complexity, and will it result in a more effective 

and efficient learning process?” The paper is, as far as we 

know, the first to study centralized communication of 

dynamic scripts. We find that, in general, it significantly 

outperforms previous work. 

 

RELATED WORK 
 

Coordination in multi-agent systems has been a subject of 

active research since the rise of interest in distributed 

artificial intelligence (Ossowski & Menezes, 2006). Various 

models, languages and applications have been developed 

over the years. So far, the lesson learned is that there is no 

one-size-fits-all solution. 

 

Coordination methods can be divided into centralized and 

decentralized methods. Coordination is called centralized 

when a single actor collects information and decides on the 

right action for all agents in the system. The choice between 

centralized and decentralized methods is not a clear one, as it 

has been shown that sometimes both methods can 

successfully be applied (Jennings, Sycara, & Wooldridge, 

1998; Panait & Luke, 2005). 

 

The difficulty of designing coordination methods has called 

for the use of machine learning. Through machine learning, 

agents can learn (1) what actions to coordinate and (2) how 

to coordinate them. Various methods for learning 

coordination have been developed. Examples include (Balch 

& Arkin, 1994; Biggers & Ioerger, 2001; Bonarini & 

Trianni, 2001; Kidney & Denzinger, 2006). Ho & Kamel 
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(1998) present a classification of coordination methods, 

along with common problems: (1) determining convergence, 

(2) the complexity of the methods, and (3) attaining good 

performance. Additional problems include (4) dealing with 

extra agents, and (5) cross-domain applicability. 

 

Most agent coordination research focuses on abstract, 

puzzle-like domains with a limited number of possible 

actions, such as the well-known predator-prey domain (Ho & 

Kamel, 1998; Stone & Veloso, 2000). Instead, we are 

looking to generate behavior for agents in air combat 

simulations, with complex environments including hostile 

agents, and an array of actions with various parameters. 

Recent efforts in this domain are few. Among others they 

include the use of neural networks (Su, Lai, Lin, & You, 

2012; Teng, Tan, Ong, & Lee, 2012) and differential 

evolution (Salling, Rensfelt, Stensbäck, & Ögren, 2013). 

However, these methods lack transparency, which is in our 

view an essential property of behavior models for training 

simulators, as they need to be understood by training 

instructors. This is the main reason why we turned to DS for 

our research. 

 

DS (Spronck, Ponsen, Sprinkhuizen-Kuyper, & Postma, 

2006) is an online learning technique based on reinforcement 

learning. The learning process is initiated with a rule base 

that contains behaviour rules for a certain agent. DS selects a 

certain number of rules from this rule base using weighted 

random selection. The selected rules form a script that 

governs the behaviour of an agent during a trial. Then the 

weights of the rules that were activated during the trial are 

adjusted based on the agent’s performance. This way, the 

chance to be selected again increases for rules that lead to 

wanted behaviour, and decreases for rules that lead to 

unwanted behaviour. Full details on the DS algorithm can be 

found in (Spronck et al., 2006). 

 

In (Toubman et al., 2014), we extended regular DS with a 

team coordination method which we called “DS+C.” In 

DS+C, agents are allowed to communicate with each other. 

The communication is done through behavior rules. In this 

way, the DS algorithm was able to learn which messages and 

which responses lead to good behavior. With DS+C, the 

agents were able to win more encounters than with regular 

DS, and do so earlier on in the learning process. This was 

especially the case against an unpredictable opponent. 

Agents using DS+C were better equipped to handle an 

opponent that used different tactics throughout the learning 

process. 

 

DS+C has only been tested on a small scale. The 

experiments in (Toubman et al., 2014) used a 2-versus-1 

scenario in which two learning ‘blue’ agents intercepted one 

‘red’ agent that used a static script. Both blues had their own 

rule base together with their own instance of the learning 

algorithm. In essence, learning took place concurrently, and 

in a distributed manner (Jennings et al., 1998; Sen & Weiss, 

1999). While this scheme produced good results, it is not 

expected to scale easily, and resulting traces proved difficult 

to interpret. 

 

While DS is not computationally expensive per se (the actual 

simulations require the largest share of the runtime), 

interlinking multiple instances such as in DS+C creates an 

increasingly difficult optimization problem as both agents try 

to optimize their rule selections simultaneously. Also, on a 

design level, it is easy to add a new agent with a self-

contained rule base, but it is harder to design a rule base for a 

learning agent that simultaneously has to learn to coordinate 

with other agents. This difficulty increases with the number 

of agents and functional requirements (Turner & Jennings, 

2001). So, while multiagent systems are inherently scalable 

(Stone & Veloso, 2000), the issue here is that DS+C agents 

require knowledge in their rule bases about the other team 

members. This is not only a problem when designing rules 

for the agents before any learning takes place, but also 

during a possible review phase, when the agents have 

learned and their behaviour is reviewed and manually 

tweaked. For these reasons, we tried to reduce the 

complexity DS+C while keeping its benefits, by moving to 

centralized coordination. 

 

DYNAMIC SCRIPTING WITH CENTRALIZED 

TEAM COORDINATION 
 

The overarching goal of this type of research and previous 

research is to generate behavior for CGFs in training 

simulations in an easy way using machine learning. To 

increase the realism of these CGFs, we looked at adding 

team coordination (Toubman et al., 2014). Therefore, we 

have added coordination rules to the rule bases of the agents, 

allowing them to send their own actions and to react to the 

others intentions. 

 

For the approach presented in this paper, we addressed the 

scaling issue by reducing the number of learning agents to 

one per team. The ‘master’ agent will direct one or more 

‘slave’ agents through the same communication mechanism 

used in DS+C. However, in the new case, only the master 

agent will optimize its own rule base, that will govern both 

 
Figure 1: Diagram of the Dynamic Scripting Learning Process 
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the behavior of the master and the slave agents. In this way, 

we expect to obtain similar team behavior while reducing the 

learning complexity. 

 

DS generates scripts by selecting rules from a rule base. In 

(Toubman et al., 2014) we exploited this mechanism by 

formulating rules that send out messages in addition to other 

effects, and thereby enabling DS to find effective exchanges 

of messages. In the current paper, we use the same 

mechanism in the same way, only in one direction. We will 

refer to this new method as the centralized team coordination 

method (CTCM). It consists of two phases. 

 

First, a rule base is designed for the master agent with 

behavior rules of which certain combinations might be able 

to solve partly the task at hand. In the case of our air combat 

simulation, such rules allow the agent to evade incoming 

missiles, or make heading changes to avoid detection. 

Creating several variants of each of those rules enables a 

wider range of possible behavior. As with DS+C, executing 

these rules also makes the agent broadcast a message to its 

slave agents with the intention of its current action. 

 

Second, a separate rule base is designed for the slave agents. 

Apart from some default rules with fallback behavior, the 

rules in the rule base are triggered only by the reception of 

messages from the master agent. For the slave agents, 

variants of rules can be added, to define a wider range of 

behavior. These variants have to be triggered by distinct 

messages from the master agent. The rule base of the master 

agent can also contain rules that are duplicates of each other, 

except for the message that they send. This way different 

behaviors for the slave agent can be tried while keeping the 

behavior of the master agent the same. The DS rule selection 

process allows us to try out automatically various 

combinations of behavior in the master and slave agents. 

 

Of course, to make decisions, agents need to be able to 

observe their environment. The master agent bases its 

decisions for its own behavior and for the slaves’ behavior 

on its own observations. In our case this happens through 

sensors such as the radar. However, if the slave agents are 

also capable of making observations, it makes no sense to 

ignore this information. Therefore, the slave agents are 

allowed to send messages back to the master agent using 

rules. The master agent does not actively respond to these 

messages, but uses the information from the slave agents to 

base new decisions on. This gives the master agent a wider 

view, but not a completely global view on the environment 

of its team. 

 

The rule base of the master agent is optimized using DS, 

while the rule bases of the slaves are not. Throughout the 

learning process, the DS algorithm selects rules from the rule 

base and forms a script for the master agent. The master 

agent uses this script during a trial in its environment. The 

selected rules also implicitly dictate the behavior of the slave 

agents. 

 

METHOD 
 

The application of the CTCM was tested in the same custom 

air-to-air combat simulation used in (Toubman et al., 2014), 

together with the same parameters for DS, allowing a close 

comparison. The approach is summarized there as follows. 

In the simulation, a formation of two blue fighters (“the 

blues”, i.e., a lead and a wingman) had to eliminate a single 

red fighter. The red fighter flew a Combat Air Patrol (CAP) 

(see Figure 2) to defend an area of airspace. The mission of 

the blues was considered successful if they eliminated the 

red fighter without any losses on their own side. The mission 

of red was to eliminate all fighters it detected. Figure 3 

shows a screenshot of the simulation. 
 

 
 

Figure 2:  The ‘Blues’ (left) Fly Towards ‘Red’ (right), Who 

Is Flying a CAP 

 

 
 

Figure 3. Screenshot of the Simulation 

 

For this application, the blue lead was made the master 

agent, and the blue wingman was made the slave agent. The 

lead used two default rules: one rule to let the lead fly to the 

area where red flies its CAP, and also to send a message to 

the wingman to let it fly in formation, and the other rule to 

set the lead’s radar to search (wide angle) mode. Both rules 

were only used when no other rules applied. The default 

rules were added to each script generated by the DS 

algorithm. The rule base of the lead further contained rules 

for locking the radar onto red, rules for firing missiles at red 

from various distances when the lead had a radar lock on red, 

and various rules for evading red’s missiles and radar locks. 

Finally, the lead’s rule base contained several rules that 

reacted to messages from the wingman containing certain 

observations by sending messages for an actual action back 

to the wingman. All of these non-default rules also send a 

message to the wingman. 

 

As the wingman did not learn in the case of CTCM, its entire 

rule base functioned as its script during encounters. The rule 

base of the wingman mostly contained rules that were 

activated by certain messages from the lead. For example, 

these rules included rules for different formations and 

turning maneuvers. The wingman also had some default 

rules that did not require messages to activate, such as the 

following rules (a) to let the wingman fire a missile at red 

whenever it had the opportunity, or (b) to fly in a default 

formation with the lead if no other formation message was 
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received. Finally, the wingman also used some rules to 

communicate certain observations to the lead. 

 

For a fair comparison, new rules were added to the DS+C 

rule bases that allowed the agents to fly in several recently 

added formations. Apart from these additions, the DS+C rule 

bases are the same as the original ones used in the previous 

experiments. (The complete CTCM and DS+C rule bases are 

omitted here for brevity.) 

 

Red used three basic tactics: a default tactic, in which it flies 

a Combat Air Patrol and engages any intruders it detects; a 

short range tactic, which is the same as the default tactic but 

red is only allowed to fire missiles from a close distance; and 

an evading tactic, which is the same as the default tactic but 

red tries to evade incoming missiles. Alternative tactics were 

also added, which were the same as the three basic tactics 

but in which red flies the CAP in the opposite direction. 

Finally, red was given a mixed tactic which consisted of the 

three basic tactics and their alternatives. When using the 

mixed tactic, red would use one of the six tactics until it lost 

an encounter, at which point it would switch to a new 

randomly selected tactic. 

 

Because the CTCM only employs one learning agent, instead 

of the two learning agents used in DS+C, we conjecture that 

CTCM will be able to learn faster than DS+C. However, as 

DS+C has two agents trying out different combinations of 

rules, it is expected that DS+C can be more creative than 

CTCM and therefore come up with better solutions. In other 

words, we conjecture that the CTCM will be more efficient 

but not more effective than DS+C. 

 

To measure effectiveness, we can simply look at  resulting 

win/loss ratios. However, it is hard to determine the 

efficiency of agents using DS, due to the random sampling 

of rules during the learning process. Therefore, we re-use the 

TP(X) measure from (Toubman et al., 2014). In brief, we 

look at the results with a moving window of 20 consecutive 

encounters. Once blue reaches X% wins in this window, we 

say that a certain turning point has been reached in the 

learning process. By varying X we can adjust the strictness 

of this measure. 

 

To investigate the efficiency and effectiveness of the CTCM, 

and compare them to that of DS+C, simulations were run in 

which the blues used either of these methods, and red used 

one of its seven tactics. 

 

RESULTS 
 

For each of the seven tactics, results were averaged over 100 

learning episodes. Each learning episode consisted of 250 

encounters. 

 

For each tactic of red, the TP(X) was calculated for the blues, 

with X being 50%, 60%, 70% and 80%. These values were 

chosen because they represent the most interesting range; 

below 50% blue is still losing, and above 80% blue will be 

experiencing rare winning streaks. 

 

The mean TP(X) results, together with the standard 

deviations, are shown in Table 1. Two-tailed two-sample t-

tests were performed on the pairs of methods for each tactic. 

Table 1 shows the p values for pairs that differ significantly 

at the a = 0.05 significance level (indicated with asterisks). 

In 21 out of the 28 comparisons, a significant difference is 

found, of which 19 are in favor of CTCM.  

 

Figure 4 shows the cumulative sum of blue wins using both 

coordination methods, measured over all tactics. The CTCM 

reaches 115917 wins out of 175000 total encounters, while 

DS+C only manages to win 95815. 

 

Table 1. Turning Points 
 

  
TP(50%) TP(60%) TP(70%) TP(80%) 

Tactics of red 
 

μ σ p μ σ p μ σ p μ σ p 

Mixed CTCM 42.9 32.7 0.21 
 

65.6 51.9 0.09 
 

100.9 74.9 0.01 * 
 

137.4 82.4 0.00 * 
 

 
DS+C 47.9 22.2 77.1 42.5 129.3 71.9 190.6 72.2 

Default CTCM 21.8 4.2 0.00 * 
 

26.6 12.4 0.00 * 
 

36.9 33.8 0.00 * 
 

60.2 66 0.00 * 
 

 
DS+C 31.9 12.2 43 22.7 57.5 34.9 86.4 59.2 

Evading CTCM 75.7 55.8 0.00 * 
 

87.8 61.9 0.00 * 
 

99.9 66.1 0.47 
 

121.1 72.8 0.12 
 

 
DS+C 51 28.2 64.9 31.8 93.9 50 137.2 72.7 

Short Range CTCM 30.1 19 0.00 * 
 

50 48.9 0.00 * 
 

95.6 87.9 0.00 * 
 

130.9 102.8 0.00 * 
 

 
DS+C 42.6 21.3 69.1 46.4 131.1 77.4 195.8 73.9 

Default (alt.) CTCM 24 8.4 0.00 * 
 

35.4 37.2 0.66 
 

63.5 73.1 0.11 
 

101.4 95.1 0.02 * 
 

 
DS+C 30 12 37.2 15.9 50.3 36 75.7 58.8 

Evading (alt.) CTCM 39.6 23.2 0.01 * 
 

47.5 26.5 0.00 * 
 

65.5 45.8 0.00 * 
 

103.1 76.3 0.01 * 
 

 
DS+C 47.2 16.4 60.8 23.1 88.2 52.4 128.8 70.6 

Short Range (alt.) CTCM 30.5 15.6 0.00 * 
 

56.6 50.6 0.02 * 
 

101.5 88.9 0.00 * 
 

143.2 104.6 0.00 * 
 

 
DS+C 49.1 27.5 88.3 55 170.5 76.3 218.1 59.8 
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Figure 1. Cumulative Wins 

Figure 5 shows rolling averages (window size 20) of blue’s 

win/loss ratio against each of red’s tactics individually. The 

CTCM is able to reach a higher win/loss ratio than DS+C 

against each tactic, apart from the alternative default tactic. 

Also, CTCM seems to reach its plateau phase in the learning 

curves before or at the same time DS+C does. Of special 

note is the graph for the evading tactic, which does not 

contain a plateau phase but instead depicts a continously 

increasing win/loss ratio. 

 

DISCUSSION 
 

The CTCM was developed as a team coordination method 

based on DS+C, but with a reduced complexity of learning, 

which should result in faster and possibly more effective 

learning. Indeed, it is clear that this is the case. The data in 

Table 1 shows that learning milestones, measured as turning 

points, are reached significantly earlier. Figure 4 also 

supports this notion, showing a steep increase in the number 

of wins. 

 

Regarding the effectiveness of the coordination methods, 

Figure 5 shows a distinct difference in performance for five 

out of seven tactics. For the default (alt.) and mixed tactics, 

the learning curves end at a very similar performance level. 

 

Before trying to explain these differences, it should be noted 

that in these experiments, the performance of DS+C does not 

match that of the original paper (Toubman et al., 2014). 

After investigation, it was found to be the case that 

continued improvements of the simulation environment have 

lead to a slight advantage for the red agent. While this 

change in performance is disadventageous for our line of 

reasoning, the results listed here provide a fairer view. 

 

We conjectured that the CTCM would manage higher 

efficiency than DS+C. This also turned out to be the case. 

Because the CTCM only employs one learning agent, the 

non-learning agent becomes a predictable factor in the 

environment of the learning agent. In the case of DS+C, with 

two learning agents, the learning agents will have to adjust 

their behaviour to the other’s behaviour as well, increasing 

the complexity of the learning problem. With the CTCM, 

less combinations of behaviour rules are possible. Assuming 

two agents, a script size s, and a rule base containing r rules 

for both agents, at the moment the DS algorithm selects rules 

to be used, there are (𝑟
𝑠
) possible combinations of scripts for 

the CTCM, whereas for DS+C, this number increases to 

(𝑟
𝑠
)
2
. Without taking into account the weight optimization 

performed by DS, this already indicates that optimal scripts 

are likely to be found faster when using CTCM. 

 

The smaller amount of possible scripts should also result in 

less creativity in the development of solutions against the 

enemy’s tactic. Therefore, we conjectured that CTCM would 

not be more effective than DS+C. However, the opposite is 

the case, as CTCM showed higher win/loss ratios, and a 

higher total amount of wins. A possible explanation is again 

the lower number of combinations of scripts. As CTCM 

rapidly proceeds to find an optimal solution, DS+C struggles 

to do the same. However, it is interesting to see that against 

each tactic, CTCM hits a specific cap on performance (0.7 

for five different tactics, see Figure 2). This means that even 

though the performance of CTCM rises rapidly, it is unable 

to find a perfect solution. This again might be a result of the 

lower possible creativity. Using the same line of reasoning, it 

can be argued that the relatively poor performance of DS+C 

is caused by a too large amount of possible script 

combinations for the particular problems we are trying to 

solve (i.e., the seven tactics). If this is the case, there might 

also be a sweet spot between the rules used with CTCM and 

DS+C, with a more diverse rule base for more creative 

solutions, possibly together with a learning method for the 

second agent as a middle ground between no learning and 

full DS that does not cause the team behaviour search space 

to explode. 

 

Finally, there is always the possibility of the quality of the 

hand-made rules holding back the performance of the agents, 

but the combination of the DS learning algorithm with ample 

variations on rules should minimize this effect. 

 

CONCLUSION 

 

In this paper, we presented a centralized team coordination 

method, that is based on an exchange of messages within a 

rule-based system such as used in earlier work, but with only 

one learning agent. The main research question of this paper 

was: “Does using this centralized system actually reduce the 

complexity, and will it result in a more effective and 

efficient learning process?” Based on the results from our 

experiments, we may conclude that the CTCM is a good 

alternative to more complex solutions with more learning 

agents, to let a team of virtual fighter pilots learn effective 

behavior. The CTCM was able to reach milestones 

significantly faster, while maintaining a better performance 

during the learning process. The fact that some of the tactics 

used by the enemy fighter pilot still present a problem to our 

learning agents, as evidenced by the difficulty of all agents 

to reach perfect performance, leaves room for further 

research. 
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Figure 2. Learning Curves 
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