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ABSTRACT

Computer generated forces (CGFs) must display realistic
behavior for tactical training simulations to yield an effective
training experience. Tradionally, the behavior of CGFs is
scripted. However, there are three drawbacks, viz. (1)
scripting limits the adaptive behavior of CGFs, (2) creating
scripts is difficult and (3) it requires scarce domain expertise.
A promising machine learning technique is the dynamic
scripting of CGF behavior. In simulating air combat
scenarios, team behavior is important, both with and without
communication. While dynamic scripting has been reported
to be effective in creating behavior for single fighters, it has
not often been used for team coordination. The dynamic
scripting technique is sufficiently flexible to be used for
different team coordination methods. In this paper, we report
the first results on centralized coordination of dynamically
scripted air combat teams, and compare these results to a
decentralized approach from earlier work. We find that using
the centralized approach leads to higher performance and
more efficient learning, although creativity of the solutions
seems bounded by the reduced complexity.

INTRODUCTION

Our point of departure is the problem of controlling
computer generated forces (CGFs) in military training
simulations. These CGFs need to exhibit realistic behavior
for simulations to have the highest possible educational
value. In the real world, military units often operate in teams,
such as infantry fireteams, carrier battle groups, or air force
flights. The coordination between team members is of
specific interest to our research. In earlier work (Toubman,
Roessingh, Spronck, Plaat, & Van den Herik, 2014), we
investigated team coordination by using communication
between CGFs. The CGFs then automatically learn team
behavior, including the required elements of communication,
using a machine learning technique called Dynamic
Scripting (DS).

DS is a reinforcement learning technique that tries to find
optimal combinations of behavior rules in a rule base. Since
DS works with predefined behavior rules, the learning
process is more transparent than with, e.g., subsymbolic
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methods. In (Toubman et al., 2014), we took advantage of
this transparency by implementing a communication scheme
inside the behavior rules used by DS to study the resulting
communication patterns. So, the DS algorithm would
automatically discover which messages and responses led to
winning behaviors.

Our previous work required setting up to two concurrently
learning agents, resulting in two instances of DS of which
the learned rules were interdependent. This complicated
interpreting the resulting rules and may have complicated
rule convergence. To reduce the complexity of the setup,
both computationally and for the human maintainer, in the
current paper we investigate a setup with a single instance of
DS. By using one instance of DS to control the agents, we
are essentially transforming the agent system to a centralized
system. The main research question of this paper is
therefore: “Does using this centralized system actually
reduce the complexity, and will it result in a more effective
and efficient learning process?” The paper is, as far as we
know, the first to study centralized communication of
dynamic scripts. We find that, in general, it significantly
outperforms previous work.

RELATED WORK

Coordination in multi-agent systems has been a subject of
active research since the rise of interest in distributed
artificial intelligence (Ossowski & Menezes, 2006). Various
models, languages and applications have been developed
over the years. So far, the lesson learned is that there is no
one-size-fits-all solution.

Coordination methods can be divided into centralized and
decentralized methods. Coordination is called centralized
when a single actor collects information and decides on the
right action for all agents in the system. The choice between
centralized and decentralized methods is not a clear one, as it
has been shown that sometimes both methods can
successfully be applied (Jennings, Sycara, & Wooldridge,
1998; Panait & Luke, 2005).

The difficulty of designing coordination methods has called
for the use of machine learning. Through machine learning,
agents can learn (1) what actions to coordinate and (2) how
to coordinate them. Various methods for learning
coordination have been developed. Examples include (Balch
& Arkin, 1994; Biggers & loerger, 2001; Bonarini &
Trianni, 2001; Kidney & Denzinger, 2006). Ho & Kamel
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Figure 1: Diagram of the Dynamic Scripting Learning Process

(1998) present a classification of coordination methods,
along with common problems: (1) determining convergence,
(2) the complexity of the methods, and (3) attaining good
performance. Additional problems include (4) dealing with
extra agents, and (5) cross-domain applicability.

Most agent coordination research focuses on abstract,
puzzle-like domains with a limited number of possible
actions, such as the well-known predator-prey domain (Ho &
Kamel, 1998; Stone & Veloso, 2000). Instead, we are
looking to generate behavior for agents in air combat
simulations, with complex environments including hostile
agents, and an array of actions with various parameters.
Recent efforts in this domain are few. Among others they
include the use of neural networks (Su, Lai, Lin, & You,
2012; Teng, Tan, Ong, & Lee, 2012) and differential
evolution (Salling, Rensfelt, Stensback, & Ogren, 2013).
However, these methods lack transparency, which is in our
view an essential property of behavior models for training
simulators, as they need to be understood by training
instructors. This is the main reason why we turned to DS for
our research.

DS (Spronck, Ponsen, Sprinkhuizen-Kuyper, & Postma,
2006) is an online learning technique based on reinforcement
learning. The learning process is initiated with a rule base
that contains behaviour rules for a certain agent. DS selects a
certain number of rules from this rule base using weighted
random selection. The selected rules form a script that
governs the behaviour of an agent during a trial. Then the
weights of the rules that were activated during the trial are
adjusted based on the agent’s performance. This way, the
chance to be selected again increases for rules that lead to
wanted behaviour, and decreases for rules that lead to
unwanted behaviour. Full details on the DS algorithm can be
found in (Spronck et al., 2006).

In (Toubman et al., 2014), we extended regular DS with a
team coordination method which we called “DS+C.” In
DS+C, agents are allowed to communicate with each other.
The communication is done through behavior rules. In this
way, the DS algorithm was able to learn which messages and
which responses lead to good behavior. With DS+C, the
agents were able to win more encounters than with regular
DS, and do so earlier on in the learning process. This was
especially the case against an unpredictable opponent.
Agents using DS+C were better equipped to handle an
opponent that used different tactics throughout the learning
process.

DS+C has only been tested on a small scale. The
experiments in (Toubman et al., 2014) used a 2-versus-1
scenario in which two learning ‘blue’ agents intercepted one
‘red’ agent that used a static script. Both blues had their own
rule base together with their own instance of the learning
algorithm. In essence, learning took place concurrently, and
in a distributed manner (Jennings et al., 1998; Sen & Weiss,
1999). While this scheme produced good results, it is not
expected to scale easily, and resulting traces proved difficult
to interpret.

While DS is not computationally expensive per se (the actual
simulations require the largest share of the runtime),
interlinking multiple instances such as in DS+C creates an
increasingly difficult optimization problem as both agents try
to optimize their rule selections simultaneously. Also, on a
design level, it is easy to add a new agent with a self-
contained rule base, but it is harder to design a rule base for a
learning agent that simultaneously has to learn to coordinate
with other agents. This difficulty increases with the number
of agents and functional requirements (Turner & Jennings,
2001). So, while multiagent systems are inherently scalable
(Stone & Veloso, 2000), the issue here is that DS+C agents
require knowledge in their rule bases about the other team
members. This is not only a problem when designing rules
for the agents before any learning takes place, but also
during a possible review phase, when the agents have
learned and their behaviour is reviewed and manually
tweaked. For these reasons, we tried to reduce the
complexity DS+C while keeping its benefits, by moving to
centralized coordination.

DYNAMIC SCRIPTING WITH CENTRALIZED
TEAM COORDINATION

The overarching goal of this type of research and previous
research is to generate behavior for CGFs in training
simulations in an easy way using machine learning. To
increase the realism of these CGFs, we looked at adding
team coordination (Toubman et al., 2014). Therefore, we
have added coordination rules to the rule bases of the agents,
allowing them to send their own actions and to react to the
others intentions.

For the approach presented in this paper, we addressed the
scaling issue by reducing the number of learning agents to
one per team. The ‘master’ agent will direct one or more
‘slave’ agents through the same communication mechanism
used in DS+C. However, in the new case, only the master
agent will optimize its own rule base, that will govern both
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the behavior of the master and the slave agents. In this way,
we expect to obtain similar team behavior while reducing the
learning complexity.

DS generates scripts by selecting rules from a rule base. In
(Toubman et al., 2014) we exploited this mechanism by
formulating rules that send out messages in addition to other
effects, and thereby enabling DS to find effective exchanges
of messages. In the current paper, we use the same
mechanism in the same way, only in one direction. We will
refer to this new method as the centralized team coordination
method (CTCM). It consists of two phases.

First, a rule base is designed for the master agent with
behavior rules of which certain combinations might be able
to solve partly the task at hand. In the case of our air combat
simulation, such rules allow the agent to evade incoming
missiles, or make heading changes to avoid detection.
Creating several variants of each of those rules enables a
wider range of possible behavior. As with DS+C, executing
these rules also makes the agent broadcast a message to its
slave agents with the intention of its current action.

Second, a separate rule base is designed for the slave agents.
Apart from some default rules with fallback behavior, the
rules in the rule base are triggered only by the reception of
messages from the master agent. For the slave agents,
variants of rules can be added, to define a wider range of
behavior. These variants have to be triggered by distinct
messages from the master agent. The rule base of the master
agent can also contain rules that are duplicates of each other,
except for the message that they send. This way different
behaviors for the slave agent can be tried while keeping the
behavior of the master agent the same. The DS rule selection
process allows us to try out automatically various
combinations of behavior in the master and slave agents.

Of course, to make decisions, agents need to be able to
observe their environment. The master agent bases its
decisions for its own behavior and for the slaves’ behavior
on its own observations. In our case this happens through
sensors such as the radar. However, if the slave agents are
also capable of making observations, it makes no sense to
ignore this information. Therefore, the slave agents are
allowed to send messages back to the master agent using
rules. The master agent does not actively respond to these
messages, but uses the information from the slave agents to
base new decisions on. This gives the master agent a wider
view, but not a completely global view on the environment
of its team.

The rule base of the master agent is optimized using DS,
while the rule bases of the slaves are not. Throughout the
learning process, the DS algorithm selects rules from the rule
base and forms a script for the master agent. The master
agent uses this script during a trial in its environment. The
selected rules also implicitly dictate the behavior of the slave
agents.

METHOD

The application of the CTCM was tested in the same custom
air-to-air combat simulation used in (Toubman et al., 2014),

together with the same parameters for DS, allowing a close
comparison. The approach is summarized there as follows.
In the simulation, a formation of two blue fighters (“the
blues”, i.e., a lead and a wingman) had to eliminate a single
red fighter. The red fighter flew a Combat Air Patrol (CAP)
(see Figure 2) to defend an area of airspace. The mission of
the blues was considered successful if they eliminated the
red fighter without any losses on their own side. The mission
of red was to eliminate all fighters it detected. Figure 3
shows a screenshot of the simulation.

»- —

Figure 2: The ‘Blues’ (left) Fly Towards ‘Red’ (right), Who
Is Flying a CAP

Figure 3. Screenshot of the Simulation

For this application, the blue lead was made the master
agent, and the blue wingman was made the slave agent. The
lead used two default rules: one rule to let the lead fly to the
area where red flies its CAP, and also to send a message to
the wingman to let it fly in formation, and the other rule to
set the lead’s radar to search (wide angle) mode. Both rules
were only used when no other rules applied. The default
rules were added to each script generated by the DS
algorithm. The rule base of the lead further contained rules
for locking the radar onto red, rules for firing missiles at red
from various distances when the lead had a radar lock on red,
and various rules for evading red’s missiles and radar locks.
Finally, the lead’s rule base contained several rules that
reacted to messages from the wingman containing certain
observations by sending messages for an actual action back
to the wingman. All of these non-default rules also send a
message to the wingman.

As the wingman did not learn in the case of CTCM, its entire
rule base functioned as its script during encounters. The rule
base of the wingman mostly contained rules that were
activated by certain messages from the lead. For example,
these rules included rules for different formations and
turning maneuvers. The wingman also had some default
rules that did not require messages to activate, such as the
following rules (a) to let the wingman fire a missile at red
whenever it had the opportunity, or (b) to fly in a default
formation with the lead if no other formation message was
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Table 1. Turning Points

TP(50%) TP(60%) TP(70%) TP(80%)

Tactics of red n c p n c p n c p n c p

Mixed CTCM 429 327 0.21 656 519 g 1009 749 o1 * 137.4 824  go0*
DS+C 47.9 22.2 77.1 42.5 129.3 71.9 190.6 72.2

Default CTCM 21.8 42 0.00 * 266 124 o= 369 338 o= 60.2 66  (0.00*
DS+C 319 12.2 43 22.7 57.5 34.9 86.4 59.2

Evading CTCM 75.7 558 0.00 * 87.8 619 pgo* 999 661 47 121.1 728 012
DS+C 51 28.2 64.9 31.8 93.9 50 137.2 72.7

Short Range CTCM 30.1 19 0.00 * 50 489 ggo* 956 879 o= 130.9 1028  goo*
DS+C 42.6 21.3 69.1 46.4 1311 77.4 195.8 73.9

Default (alt.) CTCM 24 8.4 0.00 * 354 372 (66 635 731 11 101.4 9.1 go2*
DS+C 30 12 37.2 15.9 50.3 36 75.7 58.8

Evading (alt.) CTCM 396 232 0.01* 475 265 gqgo=* 655 458 (oo~ 103.1 763 o1~
DS+C 47.2 16.4 60.8 231 88.2 52.4 128.8 70.6

Short Range (alt.) CTCM 305 156 0.00 * 566 506 (g~ 1015 889 ggo* 143.2 1046 oo
DS+C 49.1 27.5 88.3 55 170.5 76.3 218.1 59.8

received. Finally, the wingman also used some rules to
communicate certain observations to the lead.

For a fair comparison, new rules were added to the DS+C
rule bases that allowed the agents to fly in several recently
added formations. Apart from these additions, the DS+C rule
bases are the same as the original ones used in the previous
experiments. (The complete CTCM and DS+C rule bases are
omitted here for brevity.)

Red used three basic tactics: a default tactic, in which it flies
a Combat Air Patrol and engages any intruders it detects; a
short range tactic, which is the same as the default tactic but
red is only allowed to fire missiles from a close distance; and
an evading tactic, which is the same as the default tactic but
red tries to evade incoming missiles. Alternative tactics were
also added, which were the same as the three basic tactics
but in which red flies the CAP in the opposite direction.
Finally, red was given a mixed tactic which consisted of the
three basic tactics and their alternatives. When using the
mixed tactic, red would use one of the six tactics until it lost
an encounter, at which point it would switch to a new
randomly selected tactic.

Because the CTCM only employs one learning agent, instead
of the two learning agents used in DS+C, we conjecture that
CTCM will be able to learn faster than DS+C. However, as
DS+C has two agents trying out different combinations of
rules, it is expected that DS+C can be more creative than
CTCM and therefore come up with better solutions. In other
words, we conjecture that the CTCM will be more efficient
but not more effective than DS+C.

To measure effectiveness, we can simply look at resulting
win/loss ratios. However, it is hard to determine the
efficiency of agents using DS, due to the random sampling
of rules during the learning process. Therefore, we re-use the
TP(X) measure from (Toubman et al., 2014). In brief, we

look at the results with a moving window of 20 consecutive
encounters. Once blue reaches X% wins in this window, we
say that a certain turning point has been reached in the
learning process. By varying X we can adjust the strictness
of this measure.

To investigate the efficiency and effectiveness of the CTCM,
and compare them to that of DS+C, simulations were run in
which the blues used either of these methods, and red used
one of its seven tactics.

RESULTS

For each of the seven tactics, results were averaged over 100
learning episodes. Each learning episode consisted of 250
encounters.

For each tactic of red, the TP(X) was calculated for the blues,
with X being 50%, 60%, 70% and 80%. These values were
chosen because they represent the most interesting range;
below 50% blue is still losing, and above 80% blue will be
experiencing rare winning streaks.

The mean TP(X) results, together with the standard
deviations, are shown in Table 1. Two-tailed two-sample t-
tests were performed on the pairs of methods for each tactic.
Table 1 shows the p values for pairs that differ significantly
at the a = 0.05 significance level (indicated with asterisks).
In 21 out of the 28 comparisons, a significant difference is
found, of which 19 are in favor of CTCM.

Figure 4 shows the cumulative sum of blue wins using both
coordination methods, measured over all tactics. The CTCM
reaches 115917 wins out of 175000 total encounters, while
DS+C only manages to win 95815.
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Figure 1. Cumulative Wins

Figure 5 shows rolling averages (window size 20) of blue’s
win/loss ratio against each of red’s tactics individually. The
CTCM s able to reach a higher win/loss ratio than DS+C
against each tactic, apart from the alternative default tactic.
Also, CTCM seems to reach its plateau phase in the learning
curves before or at the same time DS+C does. Of special
note is the graph for the evading tactic, which does not
contain a plateau phase but instead depicts a continously
increasing win/loss ratio.

DISCUSSION

The CTCM was developed as a team coordination method
based on DS+C, but with a reduced complexity of learning,
which should result in faster and possibly more effective
learning. Indeed, it is clear that this is the case. The data in
Table 1 shows that learning milestones, measured as turning
points, are reached significantly earlier. Figure 4 also
supports this notion, showing a steep increase in the number
of wins.

Regarding the effectiveness of the coordination methods,
Figure 5 shows a distinct difference in performance for five
out of seven tactics. For the default (alt.) and mixed tactics,
the learning curves end at a very similar performance level.

Before trying to explain these differences, it should be noted
that in these experiments, the performance of DS+C does not
match that of the original paper (Toubman et al., 2014).
After investigation, it was found to be the case that
continued improvements of the simulation environment have
lead to a slight advantage for the red agent. While this
change in performance is disadventageous for our line of
reasoning, the results listed here provide a fairer view.

We conjectured that the CTCM would manage higher
efficiency than DS+C. This also turned out to be the case.
Because the CTCM only employs one learning agent, the
non-learning agent becomes a predictable factor in the
environment of the learning agent. In the case of DS+C, with
two learning agents, the learning agents will have to adjust
their behaviour to the other’s behaviour as well, increasing
the complexity of the learning problem. With the CTCM,
less combinations of behaviour rules are possible. Assuming
two agents, a script size s, and a rule base containing r rules
for both agents, at the moment the DS algorithm selects rules
to be used, there are (7) possible combinations of scripts for
the CTCM, whereas for DS+C, this number increases to

(;)2 Without taking into account the weight optimization

performed by DS, this already indicates that optimal scripts
are likely to be found faster when using CTCM.

The smaller amount of possible scripts should also result in
less creativity in the development of solutions against the
enemy’s tactic. Therefore, we conjectured that CTCM would
not be more effective than DS+C. However, the opposite is
the case, as CTCM showed higher win/loss ratios, and a
higher total amount of wins. A possible explanation is again
the lower number of combinations of scripts. As CTCM
rapidly proceeds to find an optimal solution, DS+C struggles
to do the same. However, it is interesting to see that against
each tactic, CTCM hits a specific cap on performance (0.7
for five different tactics, see Figure 2). This means that even
though the performance of CTCM rises rapidly, it is unable
to find a perfect solution. This again might be a result of the
lower possible creativity. Using the same line of reasoning, it
can be argued that the relatively poor performance of DS+C
is caused by a too large amount of possible script
combinations for the particular problems we are trying to
solve (i.e., the seven tactics). If this is the case, there might
also be a sweet spot between the rules used with CTCM and
DS+C, with a more diverse rule base for more creative
solutions, possibly together with a learning method for the
second agent as a middle ground between no learning and
full DS that does not cause the team behaviour search space
to explode.

Finally, there is always the possibility of the quality of the
hand-made rules holding back the performance of the agents,
but the combination of the DS learning algorithm with ample
variations on rules should minimize this effect.

CONCLUSION

In this paper, we presented a centralized team coordination
method, that is based on an exchange of messages within a
rule-based system such as used in earlier work, but with only
one learning agent. The main research question of this paper
was: “Does using this centralized system actually reduce the
complexity, and will it result in a more effective and
efficient learning process?” Based on the results from our
experiments, we may conclude that the CTCM is a good
alternative to more complex solutions with more learning
agents, to let a team of virtual fighter pilots learn effective
behavior. The CTCM was able to reach milestones
significantly faster, while maintaining a better performance
during the learning process. The fact that some of the tactics
used by the enemy fighter pilot still present a problem to our
learning agents, as evidenced by the difficulty of all agents
to reach perfect performance, leaves room for further
research.
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Figure 2. Learning Curves
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