

© EUROSIS-ETI

CENTRALIZED VERSUS DECENTRALIZED TEAM COORDINATION

USING DYNAMIC SCRIPTING

Armon Toubman, Jan Joris Roessingh Pieter Spronck Aske Plaat, Jaap van den Herik

National Aerospace Laboratory Tilburg University Leiden University

Anthony Fokkerweg 2 P.O. Box 90153 Niels Bohrweg 1

1059 CM Amsterdam, Netherlands 5000 LE Tilburg, Netherlands 2333 CA Leiden, Netherlands

{Armon.Toubman,

Jan.Joris.Roessingh@nlr.nl}

p.spronck@gmail.com {aske.plaat,

jaapvandenherik@gmail.com}

KEYWORDS

Machine Learning, Reinforcement Learning, Air Combat

Simulation, Dynamic Scripting, Team Coordination

ABSTRACT

Computer generated forces (CGFs) must display realistic

behavior for tactical training simulations to yield an effective

training experience. Tradionally, the behavior of CGFs is

scripted. However, there are three drawbacks, viz. (1)

scripting limits the adaptive behavior of CGFs, (2) creating

scripts is difficult and (3) it requires scarce domain expertise.

A promising machine learning technique is the dynamic

scripting of CGF behavior. In simulating air combat

scenarios, team behavior is important, both with and without

communication. While dynamic scripting has been reported

to be effective in creating behavior for single fighters, it has

not often been used for team coordination. The dynamic

scripting technique is sufficiently flexible to be used for

different team coordination methods. In this paper, we report

the first results on centralized coordination of dynamically

scripted air combat teams, and compare these results to a

decentralized approach from earlier work. We find that using

the centralized approach leads to higher performance and

more efficient learning, although creativity of the solutions

seems bounded by the reduced complexity.

INTRODUCTION

Our point of departure is the problem of controlling

computer generated forces (CGFs) in military training

simulations. These CGFs need to exhibit realistic behavior

for simulations to have the highest possible educational

value. In the real world, military units often operate in teams,

such as infantry fireteams, carrier battle groups, or air force

flights. The coordination between team members is of

specific interest to our research. In earlier work (Toubman,

Roessingh, Spronck, Plaat, & Van den Herik, 2014), we

investigated team coordination by using communication

between CGFs. The CGFs then automatically learn team

behavior, including the required elements of communication,

using a machine learning technique called Dynamic

Scripting (DS).

DS is a reinforcement learning technique that tries to find

optimal combinations of behavior rules in a rule base. Since

DS works with predefined behavior rules, the learning

process is more transparent than with, e.g., subsymbolic

methods. In (Toubman et al., 2014), we took advantage of

this transparency by implementing a communication scheme

inside the behavior rules used by DS to study the resulting

communication patterns. So, the DS algorithm would

automatically discover which messages and responses led to

winning behaviors.

Our previous work required setting up to two concurrently

learning agents, resulting in two instances of DS of which

the learned rules were interdependent. This complicated

interpreting the resulting rules and may have complicated

rule convergence. To reduce the complexity of the setup,

both computationally and for the human maintainer, in the

current paper we investigate a setup with a single instance of

DS. By using one instance of DS to control the agents, we

are essentially transforming the agent system to a centralized

system. The main research question of this paper is

therefore: “Does using this centralized system actually

reduce the complexity, and will it result in a more effective

and efficient learning process?” The paper is, as far as we

know, the first to study centralized communication of

dynamic scripts. We find that, in general, it significantly

outperforms previous work.

RELATED WORK

Coordination in multi-agent systems has been a subject of

active research since the rise of interest in distributed

artificial intelligence (Ossowski & Menezes, 2006). Various

models, languages and applications have been developed

over the years. So far, the lesson learned is that there is no

one-size-fits-all solution.

Coordination methods can be divided into centralized and

decentralized methods. Coordination is called centralized

when a single actor collects information and decides on the

right action for all agents in the system. The choice between

centralized and decentralized methods is not a clear one, as it

has been shown that sometimes both methods can

successfully be applied (Jennings, Sycara, & Wooldridge,

1998; Panait & Luke, 2005).

The difficulty of designing coordination methods has called

for the use of machine learning. Through machine learning,

agents can learn (1) what actions to coordinate and (2) how

to coordinate them. Various methods for learning

coordination have been developed. Examples include (Balch

& Arkin, 1994; Biggers & Ioerger, 2001; Bonarini &

Trianni, 2001; Kidney & Denzinger, 2006). Ho & Kamel

© EUROSIS-ETI

(1998) present a classification of coordination methods,

along with common problems: (1) determining convergence,

(2) the complexity of the methods, and (3) attaining good

performance. Additional problems include (4) dealing with

extra agents, and (5) cross-domain applicability.

Most agent coordination research focuses on abstract,

puzzle-like domains with a limited number of possible

actions, such as the well-known predator-prey domain (Ho &

Kamel, 1998; Stone & Veloso, 2000). Instead, we are

looking to generate behavior for agents in air combat

simulations, with complex environments including hostile

agents, and an array of actions with various parameters.

Recent efforts in this domain are few. Among others they

include the use of neural networks (Su, Lai, Lin, & You,

2012; Teng, Tan, Ong, & Lee, 2012) and differential

evolution (Salling, Rensfelt, Stensbäck, & Ögren, 2013).

However, these methods lack transparency, which is in our

view an essential property of behavior models for training

simulators, as they need to be understood by training

instructors. This is the main reason why we turned to DS for

our research.

DS (Spronck, Ponsen, Sprinkhuizen-Kuyper, & Postma,

2006) is an online learning technique based on reinforcement

learning. The learning process is initiated with a rule base

that contains behaviour rules for a certain agent. DS selects a

certain number of rules from this rule base using weighted

random selection. The selected rules form a script that

governs the behaviour of an agent during a trial. Then the

weights of the rules that were activated during the trial are

adjusted based on the agent’s performance. This way, the

chance to be selected again increases for rules that lead to

wanted behaviour, and decreases for rules that lead to

unwanted behaviour. Full details on the DS algorithm can be

found in (Spronck et al., 2006).

In (Toubman et al., 2014), we extended regular DS with a

team coordination method which we called “DS+C.” In

DS+C, agents are allowed to communicate with each other.

The communication is done through behavior rules. In this

way, the DS algorithm was able to learn which messages and

which responses lead to good behavior. With DS+C, the

agents were able to win more encounters than with regular

DS, and do so earlier on in the learning process. This was

especially the case against an unpredictable opponent.

Agents using DS+C were better equipped to handle an

opponent that used different tactics throughout the learning

process.

DS+C has only been tested on a small scale. The

experiments in (Toubman et al., 2014) used a 2-versus-1

scenario in which two learning ‘blue’ agents intercepted one

‘red’ agent that used a static script. Both blues had their own

rule base together with their own instance of the learning

algorithm. In essence, learning took place concurrently, and

in a distributed manner (Jennings et al., 1998; Sen & Weiss,

1999). While this scheme produced good results, it is not

expected to scale easily, and resulting traces proved difficult

to interpret.

While DS is not computationally expensive per se (the actual

simulations require the largest share of the runtime),

interlinking multiple instances such as in DS+C creates an

increasingly difficult optimization problem as both agents try

to optimize their rule selections simultaneously. Also, on a

design level, it is easy to add a new agent with a self-

contained rule base, but it is harder to design a rule base for a

learning agent that simultaneously has to learn to coordinate

with other agents. This difficulty increases with the number

of agents and functional requirements (Turner & Jennings,

2001). So, while multiagent systems are inherently scalable

(Stone & Veloso, 2000), the issue here is that DS+C agents

require knowledge in their rule bases about the other team

members. This is not only a problem when designing rules

for the agents before any learning takes place, but also

during a possible review phase, when the agents have

learned and their behaviour is reviewed and manually

tweaked. For these reasons, we tried to reduce the

complexity DS+C while keeping its benefits, by moving to

centralized coordination.

DYNAMIC SCRIPTING WITH CENTRALIZED

TEAM COORDINATION

The overarching goal of this type of research and previous

research is to generate behavior for CGFs in training

simulations in an easy way using machine learning. To

increase the realism of these CGFs, we looked at adding

team coordination (Toubman et al., 2014). Therefore, we

have added coordination rules to the rule bases of the agents,

allowing them to send their own actions and to react to the

others intentions.

For the approach presented in this paper, we addressed the

scaling issue by reducing the number of learning agents to

one per team. The ‘master’ agent will direct one or more

‘slave’ agents through the same communication mechanism

used in DS+C. However, in the new case, only the master

agent will optimize its own rule base, that will govern both

Figure 1: Diagram of the Dynamic Scripting Learning Process

© EUROSIS-ETI

the behavior of the master and the slave agents. In this way,

we expect to obtain similar team behavior while reducing the

learning complexity.

DS generates scripts by selecting rules from a rule base. In

(Toubman et al., 2014) we exploited this mechanism by

formulating rules that send out messages in addition to other

effects, and thereby enabling DS to find effective exchanges

of messages. In the current paper, we use the same

mechanism in the same way, only in one direction. We will

refer to this new method as the centralized team coordination

method (CTCM). It consists of two phases.

First, a rule base is designed for the master agent with

behavior rules of which certain combinations might be able

to solve partly the task at hand. In the case of our air combat

simulation, such rules allow the agent to evade incoming

missiles, or make heading changes to avoid detection.

Creating several variants of each of those rules enables a

wider range of possible behavior. As with DS+C, executing

these rules also makes the agent broadcast a message to its

slave agents with the intention of its current action.

Second, a separate rule base is designed for the slave agents.

Apart from some default rules with fallback behavior, the

rules in the rule base are triggered only by the reception of

messages from the master agent. For the slave agents,

variants of rules can be added, to define a wider range of

behavior. These variants have to be triggered by distinct

messages from the master agent. The rule base of the master

agent can also contain rules that are duplicates of each other,

except for the message that they send. This way different

behaviors for the slave agent can be tried while keeping the

behavior of the master agent the same. The DS rule selection

process allows us to try out automatically various

combinations of behavior in the master and slave agents.

Of course, to make decisions, agents need to be able to

observe their environment. The master agent bases its

decisions for its own behavior and for the slaves’ behavior

on its own observations. In our case this happens through

sensors such as the radar. However, if the slave agents are

also capable of making observations, it makes no sense to

ignore this information. Therefore, the slave agents are

allowed to send messages back to the master agent using

rules. The master agent does not actively respond to these

messages, but uses the information from the slave agents to

base new decisions on. This gives the master agent a wider

view, but not a completely global view on the environment

of its team.

The rule base of the master agent is optimized using DS,

while the rule bases of the slaves are not. Throughout the

learning process, the DS algorithm selects rules from the rule

base and forms a script for the master agent. The master

agent uses this script during a trial in its environment. The

selected rules also implicitly dictate the behavior of the slave

agents.

METHOD

The application of the CTCM was tested in the same custom

air-to-air combat simulation used in (Toubman et al., 2014),

together with the same parameters for DS, allowing a close

comparison. The approach is summarized there as follows.

In the simulation, a formation of two blue fighters (“the

blues”, i.e., a lead and a wingman) had to eliminate a single

red fighter. The red fighter flew a Combat Air Patrol (CAP)

(see Figure 2) to defend an area of airspace. The mission of

the blues was considered successful if they eliminated the

red fighter without any losses on their own side. The mission

of red was to eliminate all fighters it detected. Figure 3

shows a screenshot of the simulation.

Figure 2: The ‘Blues’ (left) Fly Towards ‘Red’ (right), Who

Is Flying a CAP

Figure 3. Screenshot of the Simulation

For this application, the blue lead was made the master

agent, and the blue wingman was made the slave agent. The

lead used two default rules: one rule to let the lead fly to the

area where red flies its CAP, and also to send a message to

the wingman to let it fly in formation, and the other rule to

set the lead’s radar to search (wide angle) mode. Both rules

were only used when no other rules applied. The default

rules were added to each script generated by the DS

algorithm. The rule base of the lead further contained rules

for locking the radar onto red, rules for firing missiles at red

from various distances when the lead had a radar lock on red,

and various rules for evading red’s missiles and radar locks.

Finally, the lead’s rule base contained several rules that

reacted to messages from the wingman containing certain

observations by sending messages for an actual action back

to the wingman. All of these non-default rules also send a

message to the wingman.

As the wingman did not learn in the case of CTCM, its entire

rule base functioned as its script during encounters. The rule

base of the wingman mostly contained rules that were

activated by certain messages from the lead. For example,

these rules included rules for different formations and

turning maneuvers. The wingman also had some default

rules that did not require messages to activate, such as the

following rules (a) to let the wingman fire a missile at red

whenever it had the opportunity, or (b) to fly in a default

formation with the lead if no other formation message was

© EUROSIS-ETI

received. Finally, the wingman also used some rules to

communicate certain observations to the lead.

For a fair comparison, new rules were added to the DS+C

rule bases that allowed the agents to fly in several recently

added formations. Apart from these additions, the DS+C rule

bases are the same as the original ones used in the previous

experiments. (The complete CTCM and DS+C rule bases are

omitted here for brevity.)

Red used three basic tactics: a default tactic, in which it flies

a Combat Air Patrol and engages any intruders it detects; a

short range tactic, which is the same as the default tactic but

red is only allowed to fire missiles from a close distance; and

an evading tactic, which is the same as the default tactic but

red tries to evade incoming missiles. Alternative tactics were

also added, which were the same as the three basic tactics

but in which red flies the CAP in the opposite direction.

Finally, red was given a mixed tactic which consisted of the

three basic tactics and their alternatives. When using the

mixed tactic, red would use one of the six tactics until it lost

an encounter, at which point it would switch to a new

randomly selected tactic.

Because the CTCM only employs one learning agent, instead

of the two learning agents used in DS+C, we conjecture that

CTCM will be able to learn faster than DS+C. However, as

DS+C has two agents trying out different combinations of

rules, it is expected that DS+C can be more creative than

CTCM and therefore come up with better solutions. In other

words, we conjecture that the CTCM will be more efficient

but not more effective than DS+C.

To measure effectiveness, we can simply look at resulting

win/loss ratios. However, it is hard to determine the

efficiency of agents using DS, due to the random sampling

of rules during the learning process. Therefore, we re-use the

TP(X) measure from (Toubman et al., 2014). In brief, we

look at the results with a moving window of 20 consecutive

encounters. Once blue reaches X% wins in this window, we

say that a certain turning point has been reached in the

learning process. By varying X we can adjust the strictness

of this measure.

To investigate the efficiency and effectiveness of the CTCM,

and compare them to that of DS+C, simulations were run in

which the blues used either of these methods, and red used

one of its seven tactics.

RESULTS

For each of the seven tactics, results were averaged over 100

learning episodes. Each learning episode consisted of 250

encounters.

For each tactic of red, the TP(X) was calculated for the blues,

with X being 50%, 60%, 70% and 80%. These values were

chosen because they represent the most interesting range;

below 50% blue is still losing, and above 80% blue will be

experiencing rare winning streaks.

The mean TP(X) results, together with the standard

deviations, are shown in Table 1. Two-tailed two-sample t-

tests were performed on the pairs of methods for each tactic.

Table 1 shows the p values for pairs that differ significantly

at the a = 0.05 significance level (indicated with asterisks).

In 21 out of the 28 comparisons, a significant difference is

found, of which 19 are in favor of CTCM.

Figure 4 shows the cumulative sum of blue wins using both

coordination methods, measured over all tactics. The CTCM

reaches 115917 wins out of 175000 total encounters, while

DS+C only manages to win 95815.

Table 1. Turning Points

TP(50%) TP(60%) TP(70%) TP(80%)

Tactics of red

μ σ p μ σ p μ σ p μ σ p

Mixed CTCM 42.9 32.7 0.21

65.6 51.9 0.09

100.9 74.9 0.01 *

137.4 82.4 0.00 *

DS+C 47.9 22.2 77.1 42.5 129.3 71.9 190.6 72.2

Default CTCM 21.8 4.2 0.00 *

26.6 12.4 0.00 *

36.9 33.8 0.00 *

60.2 66 0.00 *

DS+C 31.9 12.2 43 22.7 57.5 34.9 86.4 59.2

Evading CTCM 75.7 55.8 0.00 *

87.8 61.9 0.00 *

99.9 66.1 0.47

121.1 72.8 0.12

DS+C 51 28.2 64.9 31.8 93.9 50 137.2 72.7

Short Range CTCM 30.1 19 0.00 *

50 48.9 0.00 *

95.6 87.9 0.00 *

130.9 102.8 0.00 *

DS+C 42.6 21.3 69.1 46.4 131.1 77.4 195.8 73.9

Default (alt.) CTCM 24 8.4 0.00 *

35.4 37.2 0.66

63.5 73.1 0.11

101.4 95.1 0.02 *

DS+C 30 12 37.2 15.9 50.3 36 75.7 58.8

Evading (alt.) CTCM 39.6 23.2 0.01 *

47.5 26.5 0.00 *

65.5 45.8 0.00 *

103.1 76.3 0.01 *

DS+C 47.2 16.4 60.8 23.1 88.2 52.4 128.8 70.6

Short Range (alt.) CTCM 30.5 15.6 0.00 *

56.6 50.6 0.02 *

101.5 88.9 0.00 *

143.2 104.6 0.00 *

DS+C 49.1 27.5 88.3 55 170.5 76.3 218.1 59.8

© EUROSIS-ETI

Figure 1. Cumulative Wins

Figure 5 shows rolling averages (window size 20) of blue’s

win/loss ratio against each of red’s tactics individually. The

CTCM is able to reach a higher win/loss ratio than DS+C

against each tactic, apart from the alternative default tactic.

Also, CTCM seems to reach its plateau phase in the learning

curves before or at the same time DS+C does. Of special

note is the graph for the evading tactic, which does not

contain a plateau phase but instead depicts a continously

increasing win/loss ratio.

DISCUSSION

The CTCM was developed as a team coordination method

based on DS+C, but with a reduced complexity of learning,

which should result in faster and possibly more effective

learning. Indeed, it is clear that this is the case. The data in

Table 1 shows that learning milestones, measured as turning

points, are reached significantly earlier. Figure 4 also

supports this notion, showing a steep increase in the number

of wins.

Regarding the effectiveness of the coordination methods,

Figure 5 shows a distinct difference in performance for five

out of seven tactics. For the default (alt.) and mixed tactics,

the learning curves end at a very similar performance level.

Before trying to explain these differences, it should be noted

that in these experiments, the performance of DS+C does not

match that of the original paper (Toubman et al., 2014).

After investigation, it was found to be the case that

continued improvements of the simulation environment have

lead to a slight advantage for the red agent. While this

change in performance is disadventageous for our line of

reasoning, the results listed here provide a fairer view.

We conjectured that the CTCM would manage higher

efficiency than DS+C. This also turned out to be the case.

Because the CTCM only employs one learning agent, the

non-learning agent becomes a predictable factor in the

environment of the learning agent. In the case of DS+C, with

two learning agents, the learning agents will have to adjust

their behaviour to the other’s behaviour as well, increasing

the complexity of the learning problem. With the CTCM,

less combinations of behaviour rules are possible. Assuming

two agents, a script size s, and a rule base containing r rules

for both agents, at the moment the DS algorithm selects rules

to be used, there are (𝑟
𝑠
) possible combinations of scripts for

the CTCM, whereas for DS+C, this number increases to

(𝑟
𝑠
)
2
. Without taking into account the weight optimization

performed by DS, this already indicates that optimal scripts

are likely to be found faster when using CTCM.

The smaller amount of possible scripts should also result in

less creativity in the development of solutions against the

enemy’s tactic. Therefore, we conjectured that CTCM would

not be more effective than DS+C. However, the opposite is

the case, as CTCM showed higher win/loss ratios, and a

higher total amount of wins. A possible explanation is again

the lower number of combinations of scripts. As CTCM

rapidly proceeds to find an optimal solution, DS+C struggles

to do the same. However, it is interesting to see that against

each tactic, CTCM hits a specific cap on performance (0.7

for five different tactics, see Figure 2). This means that even

though the performance of CTCM rises rapidly, it is unable

to find a perfect solution. This again might be a result of the

lower possible creativity. Using the same line of reasoning, it

can be argued that the relatively poor performance of DS+C

is caused by a too large amount of possible script

combinations for the particular problems we are trying to

solve (i.e., the seven tactics). If this is the case, there might

also be a sweet spot between the rules used with CTCM and

DS+C, with a more diverse rule base for more creative

solutions, possibly together with a learning method for the

second agent as a middle ground between no learning and

full DS that does not cause the team behaviour search space

to explode.

Finally, there is always the possibility of the quality of the

hand-made rules holding back the performance of the agents,

but the combination of the DS learning algorithm with ample

variations on rules should minimize this effect.

CONCLUSION

In this paper, we presented a centralized team coordination

method, that is based on an exchange of messages within a

rule-based system such as used in earlier work, but with only

one learning agent. The main research question of this paper

was: “Does using this centralized system actually reduce the

complexity, and will it result in a more effective and

efficient learning process?” Based on the results from our

experiments, we may conclude that the CTCM is a good

alternative to more complex solutions with more learning

agents, to let a team of virtual fighter pilots learn effective

behavior. The CTCM was able to reach milestones

significantly faster, while maintaining a better performance

during the learning process. The fact that some of the tactics

used by the enemy fighter pilot still present a problem to our

learning agents, as evidenced by the difficulty of all agents

to reach perfect performance, leaves room for further

research.

0

20000

40000

60000

80000

100000

120000

0 100 200

B
lu

e
w

in
s

Encounter

CTCM

DS+C

© EUROSIS-ETI

REFERENCES

Balch, T., & Arkin, R. C. (1994). Communication in reactive

multiagent robotic systems. Autonomous Robots, 1(1), 27–
52. doi:10.1007/BF00735341

Biggers, K. E., & Ioerger, T. R. (2001). Automatic generation of

communication and teamwork within multi-agent teams.

Applied Artificial Intelligence, 15(10), 875–916.
doi:10.1080/088395101753242679

Bonarini, A., & Trianni, V. (2001). Learning fuzzy classifier

systems for multi-agent coordination. Information Sciences,

136(1-4), 215–239. doi:10.1016/S0020-0255(01)00149-9

Ho, F., & Kamel, M. (1998). Learning Coordination Strategies for

Cooperative Multiagent Systems. Machine Learning, 33(2-
3), 155–177. doi:10.1023/A:1007562506751

Jennings, N. R., Sycara, K., & Wooldridge, M. (1998). A Roadmap

of Agent Research and Development. Autonomous Agents

and Multi-Agent Systems, 1(1), 7–38.

doi:10.1023/A:1010090405266

Kidney, J., & Denzinger, J. (2006). Testing the limits of emergent

behavior in MAS using learning of cooperative behavior. In

Proceedings of the 2006 conference on ECAI 2006: 17th

European Conference on Artificial Intelligence (Vol. 141,
pp. 260–264). Riva del Garda, Italy: IOS Press.

Ossowski, S., & Menezes, R. (2006). On coordination and its

significance to distributed and multi-agent systems.

Concurrency and Computation: Practice and Experience,
18(4), 359–370. doi:10.1002/cpe.943

Panait, L., & Luke, S. (2005). Cooperative Multi-Agent Learning:

The State of the Art. Autonomous Agents and Multi-Agent
Systems, 11(3), 387–434. doi:10.1007/s10458-005-2631-2

Salling, E., Rensfelt, A., Stensbäck, N., & Ögren, P. (2013).

Learning Air Combat Parameters using Differential

Evolution. In Twelfth Scandinavian Conference on Artificial

Intelligence (pp. 225–234). doi:10.3233/978-1-61499-330-8-
225

Sen, S., & Weiss, G. (1999). Learning in Multiagent Systems. In G.
Weiss (Ed.), Multiagent Systems (pp. 259–298). MIT Press.

Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., & Postma, E.

(2006). Adaptive game AI with dynamic scripting. Machine
Learning, 63(3), 217–248. doi:10.1007/s10994-006-6205-6

Stone, P., & Veloso, M. (2000). Multiagent systems: A survey from

a machine learning perspective. Autonomous Robots, 8(3),
345–383.

Su, M.-C., Lai, S.-C., Lin, S.-C., & You, L.-F. (2012). A new

approach to multi-aircraft air combat assignments. Swarm

and Evolutionary Computation, 6, 39–46. Retrieved from

http://www.sciencedirect.com/science/article/pii/S22106502
12000260

Teng, T.-H., Tan, A.-H., Ong, W.-S., & Lee, K.-L. (2012).

Adaptive CGF for pilots training in air combat simulation. In

15th International Conference on Information Fusion
(FUSION) (pp. 2263–2270). Singapore.

Toubman, A., Roessingh, J. J., Spronck, P., Plaat, A., & Van den

Herik, J. (2014). Dynamic Scripting with Team Coordination

in Air Combat Simulation. In Proceedings of the 27th

International Conference on Industrial, Engineering &

Other Applications of Applied Intelligent Systems (pp. 440–

449). Kaohsiung, Taiwan: Springer-Verlag. doi:10.1007/978-
3-319-07455-9_46

Turner, P. J., & Jennings, N. R. (2001). Improving the scalability of

multi-agent systems. In T. Wagner & O. F. Rana (Eds.),

Infrastructure for Agents, Multi-Agent Systems, and Scalable

Multi-Agent Systems (pp. 246–262). Springer Berlin
Heidelberg. doi:10.1007/3-540-47772-1_25

ARMON TOUBMAN is a PhD student at the Training,

Simulation and Operator Performance department of the

National Aerospace Laboratory in the Netherlands. His

research focuses on the use of machine learning techniques

for the automatic generation of behavior for air combat

simulations. He holds a Master of Science degree in

Artificial Intelligence from VU University Amsterdam.

© EUROSIS-ETI

Figure 2. Learning Curves

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ea

n
 w

in
/l

o
ss

 r
at

io

Encounter

Default

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ea

n
 w

in
/l

o
ss

 r
at

io

Encounter

Default (alt.)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ea

n
 w

in
/l

o
ss

 r
at

io

Encounter

Evading

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ea

n
 w

in
/l

o
ss

 r
at

io

Encounter

Evading (alt.)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ea

n
 w

in
/l

o
ss

 r
at

io

Encounter

Short Range

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ea

n
 w

in
/l

o
ss

 r
at

io

Encounter

Short Range (alt.)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ea

n
 w

in
/l

o
ss

 r
at

io

Encounter

Mixed

CTCM DS+C

