
Automatically Generating Game Tactics via

Evolutionary Learning

Marc Ponsen Héctor Muñoz-Avila Pieter Spronck David W. Aha

August 15, 2006

Abstract

The decision-making process of computer-controlled opponents in video
games is called game AI. Adaptive game AI can improve the entertainment
value of games by allowing computer-controlled opponents to fix weaknesses
automatically in the game AI, and to respond to changes in human-player
tactics. Dynamic scripting is a reinforcement learning approach to adap-
tive game AI that learns, during gameplay, which game tactics an oppo-
nent should select to play effectively. In previous work, the tactics used
by dynamic scripting were designed manually. We introduce the Evolu-
tionary State-based Tactics Generator (ESTG), which uses an evolution-
ary algorithm to generate tactics automatically. Experimental results show
that ESTG improves dynamic scripting’s performance in a real-time strategy
game. We conclude that high-quality domain knowledge can be automati-
cally generated for strong adaptive game AI opponents. Game developers
can benefit from applying ESTG, as it considerably reduces the time and
effort needed to create adaptive game AI.

Introduction

Today’s video games are becoming increasingly realistic, especially in terms of
the graphical presentation of the virtual world in which the game is situated. To
further increase realism, characters “living” in these virtual worlds must be able
to reason effectively. The term game AI refers to the decision-making process of
computer controlled opponents. Both game industry practitioners (Rabin, 2004)
and academics (Laird & van Lent, 2000) predict an increasing importance of game
AI. High-quality game AI will increase the game playing challenge (Nareyek, 2004)
and is a potential selling point of a game. However, the time allocated to develop
game AI is typically short; most game companies assign graphics and storytelling
the highest priorities and do not implement the game AI until the end of the
development process (Nareyek, 2004). This complicates designing and testing
strong game AI (i.e., game AI that is effective in winning the game). Thus, even
in state-of-the-art games, game AI is generally of inferior quality (Schaeffer, 2001).

Adaptive game AI, which concerns methods for automatically adapting the
behavior of computer-controlled opponents, can potentially increase the quality of
game AI. Dynamic scripting is a reinforcement learning technique for implement-
ing adaptive game AI (Spronck, Sprinkhuizen-Kuyper, & Postma, 2004). We apply
dynamic scripting to learn a policy for the complex real-time strategy (RTS) game

Wargus. Dynamic scripting employs extensive domain knowledge in the form of
knowledge bases containing tactics (i.e., sequences of primitive actions). Manu-
ally designing these knowledge bases may be time-intensive, and risks errors in
analysis and encoding. We introduce a novel methodology, implemented in the
Evolutionary State-based Tactics Generator (ESTG), which uses an evolutionary
algorithm to automatically generate tactics to be used by dynamic scripting. Our
empirical results show that dynamic scripting equipped with the evolved tactics
can successfully adapt (i.e., learn a winning policy) to static opponents.

In this article, we first describe related work. We then introduce RTS games
and the game environment selected for the experiments. Next, we discuss our
RTS implementation for dynamic scripting and the ESTG method for automati-
cally generating the dynamic-scripting knowledge bases. Finally, we describe our
experimental results, and draw conclusions.

Related Work

AI researchers have shown that successful adaptive game AI is feasible, under
the condition that it is applied to a limited game scenario, or that appropriate
abstractions and generalizations are assumed.

Demasi and Cruz (2002) used an evolutionary algorithm to adapt the behavior
of opponent agents in an action game. They reported fast conversion to successful
behavior, but their agents were limited to recognizing three ternary state para-
meters, and making a choice out of only four different actions. Guestrin, Koller,
Gearhart, and Kanodia (2003) applied relational Markov decision process models
for some limited RTS game scenarios, e.g., three on three combat. Cheng and
Thawonmas (2004) proposed a case-based plan recognition approach for assisting
RTS players, but only for low-level management tasks. In contrast, we focus on
the highly complex learning task of winning complete RTS games.

Spronck et al. (2004) and Ponsen and Spronck (2004) implemented a rein-
forcement-learning (RL) technique tailored for video games called dynamic script-
ing. They report good learning performances on the challenging task of winning
video games. However, dynamic scripting requires a considerably reduced state
and action space to be able to adapt sufficiently fast. Ponsen and Spronck (2004)
evolved high-quality domain knowledge in the domain of RTS games with an evo-
lutionary algorithm, and used this to manually design game tactics (stored in
knowledge bases). In contrast, in the present work we generate the tactics for the
knowledge bases fully automatically. Aha, Molineaux, and Ponsen (2005) build on
the work of Ponsen and Spronck (2004) by using a case-based reasoning technique
that learns which evolved tactics are appropriate given the state and opponent.
Marthi, Russell, and Latham (2005) applied hierarchical reinforcement learning
in a limited RTS domain. Their action space consisted of partial programs, es-
sentially high-level preprogrammed behaviors with a number of choice points that
can be learned using Q-learning. Our tactics bear a strong resemblance to their
partial programs: both are preprogrammed, temporally extended actions that can
be invoked on a higher level.

Real-Time Strategy Games

RTS is a category of strategy games that focus on military combat. For our
experiments, we selected the RTS game Wargus, which is built on Stratagus, an
open-source engine for RTS games. Wargus (illustrated in Figure 1) is a clone
of the popular game Warcraft IITM. RTS games such as Warcraft IITM require
the player to control armies (consisting of different types of units) to defeat all
opposing forces that are situated in a virtual battlefield (often called a map) in
real-time.

In most RTS games, the key to winning lies in efficiently collecting and manag-
ing resources, and appropriately allocating these resources over the various action
elements. Typically, the game AI in RTS games, which determines all decisions for
a computer opponent over the course of the whole game, is encoded in the form
of scripts, which are lists of actions that are executed sequentially. We define an
action as an atomic transformation in the game situation. Typical actions in RTS
games include constructing buildings, researching new technologies, and combat.
Both human and computer players can use these actions to form their game strat-
egy and tactics. We will employ the following definitions in this paper: a tactic is
a sequence consisting of one or more primitive actions (e.g., constructing a black-
smith and acquiring all related technologies for that building), and a strategy is a
sequence of tactics that can be used to play a complete game.

Designing strong RTS strategies is a challenging task. RTS games include
only partially observable environments which contain adversaries that modify the
state asynchronously, and whose decision models are unknown, thereby making it
infeasible to obtain complete information on the current situation. In addition,
RTS games include an enormous number of possible actions that can be executed
at any given time, and some of their effects on the state are uncertain. Also,
to successfully play an RTS game, players must make their decisions under time
constraints due to the real-time game flow. These properties of RTS games make
them a challenging domain for AI research.

Reinforcement Learning with Dynamic Scripting

In reinforcement learning problems, an adaptive agent interacts with its environ-
ment and iteratively learns a policy, i.e., it learns what to do when in order to
achieve a certain goal, based on a scalar reward signal it receives from the envi-
ronment (Sutton & Barto, 1998; Kaelbling, Littman, & Moore, 1996). Policies can
be represented in a tabular format, where each cell includes a state or state-action
value representing, respectively, the desirability of being in a state or the desir-
ability of choosing an action in a state. Several approaches have been defined for
learning optimal policies, such as dynamic programming, Monte Carlo methods
and temporal-difference (TD) learning methods (Sutton & Barto, 1998).

Dynamic scripting (Spronck et al., 2004) is a reinforcement learning technique
designed for creating adaptive video game agents. It employs on-policy value iter-
ation to optimize state-action values based solely on a scalar reward signal. Conse-
quently, it is only concerned with maximizing immediate rewards. Action selection

Figure 1: Screenshot of a battle in the RTS game Wargus.

is implemented with a softmax method (Sutton & Barto, 1998). The reward in the
dynamic scripting framework is typically designed with prior knowledge of how to
achieve a certain goal, and causes high discrepancies in the state-action values.
Consequently, this will lead to faster exploitation, i.e., the chance that the greedy
action is selected increases.

Dynamic scripting has been designed so that adaptive agents start exploiting
knowledge only in a few trials. It allows balancing exploitation and exploration
by maintaining a minimum and maximum selection probability for all actions. El-
ementary solution methods such as TD learning or Monte-Carlo learning update
state-action values only after they are executed (Sutton & Barto, 1998). In con-
trast, dynamic scripting updates all state-action values in a specific state through
a redistribution process (Spronck et al., 2004), so that the sum of the state-action
values remains constant.

Because of these properties, dynamic scripting cannot guarantee convergence.
This actually is essential for its successful use in video games. The learning task in
a game constantly changes (e.g., an opponent player may choose to switch tactics),
thus aiming for an optimal policy may result in overfitting to a specific strategy.
Dynamic scripting is capable of generating a variety of behaviors, and to respond
quickly to changing game dynamics.

Dynamic Scripting in Wargus

In this section we will detail our dynamic scripting implementation in the RTS
game Wargus. In Wargus, we play an agent controlled by dynamic scripting,
henceforth called the adaptive agent, against a static agent. Both agents start
with a town hall, barracks, and several units. The static agent executes a static

script (representing a strategy), while the adaptive agent generates scripts on the
fly based on its current policy. We will next describe our representation of the
state space in Wargus and detail the policy update process.

States and their Knowledge Bases

Typically, players in a RTS game such as Wargus start with few admissible actions
available to them. As players progress, they acquire a larger arsenal of weapons,
units, and buildings. The tactics that can be used in a RTS game mainly depend
on the availability of different unit types and technologies.

We divided the Wargus game into a small number of abstract states. Each
state corresponds to a unique knowledge base whose tactics can be selected by
dynamic scripting when the game is in that particular state. We distinguish states
according to types of available buildings (see Figure 2), which in turn determine
the unit types that can be built and the technologies that can be researched.
Consequently, state changes are spawned by tactics that create new buildings.

Dynamic scripting starts by selecting tactics for the first state. When a tactic
is selected that spawns a state change, tactics will then be selected for the new
state. To avoid monotonous behavior, each tactic is restricted to be selected only
once per state. Tactic selection continues until either a total of N tactics are
selected (N = 100 was used for the experiments) or until final state 20 (see Figure
2) is reached. For this state in which the player possesses all relevant buildings, a
maximum of M tactics must be selected (M = 20 was used for the experiments),
before the script moves into a repeating cycle (called the ‘attack loop’), which
continuously initiates attacks on the opponents.

Weight Value Adaptation

For each tactic in a state-specific knowledge base, dynamic scripting maintains
an associated weight value that indicates the desirability of choosing that tactic
in the specific state. At the start of our experiments weight values of all tactics
are initialized to 100. After each game, the weight values of all tactics employed
are updated. The magnitude of the weight adjustments in a state is uniformly
distributed over the non-selected tactics for that state. The size of weight value
updates is determined mainly by a state reward, i.e., an evaluation of the perfor-
mance of the adaptive agent during a certain state. To recognize the importance
of winning or losing the game, weight value updates also take into account a global
reward, i.e., an evaluation of the performance of the adaptive agent for the game
as a whole.

The state reward function Ri for state i, i ∈ N0, for the adaptive agent a yields
a value in the range [0, 1] and is defined as follows.

Ri =
(Sa,i − Sa,i−1)

(Sa,i − Sa,i−1) + (Ss,i − Ss,i−1)
(1)

In this equation, Sa,x represents the score of the adaptive agent a after state x,
Ss,x represents the score of the static agent s after state x, Sa,0 = 0, and Ss,0 = 0.

Figure 2: A building-specific state lattice for Wargus, where nodes represent states
(defined by a set of completed buildings), and state transitions involve constructing
a specific building.

The score is a value that measures the success of an agent up to the moment the
score is calculated. The score never decreases during game play.

The global reward function R∞ for the adaptive agent a yields a value in the
range [0, 1] and it is defined as follows.

R∞ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min

(
Sa,L

Sa,L + Ss,L
, b

)
if a lost,

max

(
Sa,L

Sa,L + Ss,L
, b

)
if a won.

(2)

In this equation, Sa,x and Ss,x are as in equation 1, L is the number of the state
in which the game ended, and b ∈ (0, 1) is the break-even point. At this point
the weight values remain unchanged.

The score function is domain dependent, and should reflect the relative strength
of the two opposing agents in the game. For Wargus, the score Sx,y for agent x
after state y is defined as follows.

Sx,y = C Mx,y + (1 − C)Bx,y (3)

In this equation, for agent x after state y, Mx,y represents the military points
scored, i.e., the number of points awarded for killing units and destroying build-
ings, and Bx,y represents the building points scored, i.e., the number of points
awarded for conscripting units and constructing buildings. The constant C ∈ [0, 1]
represents the weight given to the military points in the score function. Since ex-
perience indicates that military points are a better indication for the success of a
tactic than building points, C is set to 0.7.

Weight values are bounded by a range [Wmin,Wmax]. A new weight value is
calculated as W + �W , where W is the original weight value, and the weight
adjustment �W is expressed by the following formula.

�W =

⎧⎪⎪⎨
⎪⎪⎩

−Pmax

(
Cend

b−R∞
b + (1 − Cend) b−Ri

b

)
{R∞ < b}

Rmax

(
Cend

R∞−b
1−b + (1 − Cend) Ri−b

1−b

)
{R∞ ≥ b}

(4)

In this equation, Rmax ∈ N and Pmax ∈ N are the maximum reward and maximum
penalty respectively, R∞ is the global reward, Ri is the state reward for the state
corresponding to the knowledge base containing the weight value, and b is the
break-even point. For the experiments in this paper, we set Pmax to 400, Rmax

to 400, Wmax to 4000, Wmin to 25, and b to 0.5. The constant Cend ∈ [0, 1]
represents the fraction of the weight value adjustment that is determined by the
global reward. It is desirable that, even if a game is lost, knowledge bases for
states where performance was successful are not punished (too much). Therefore,
Cend was set to 0.3, i.e., the contribution of the state reward Ri to the weight
adjustment is larger than the contribution of the global reward R∞.

Automatically Generating Tactics

The Evolutionary State-based Tactics Generator (ESTG) method automatically
generates knowledge bases for use by dynamic scripting. The ESTG process is
illustrated in Figure 3.

Figure 3: Schematic representation of ESTG.

The first step (EA for Evolutionary Algorithm) uses an evolutionary algorithm
to search for strategies that defeat specific opponent strategies. This step of the
process is similar to experiments described by Ponsen and Spronck (2004). The
opponent strategies are provided to EA as a training set, which is the only manual
input ESTG requires. In our experiments, the training set contains 40 different
strategies. Four of these are static scripts that were designed by the Wargus
developers. Static scripts are usually of high quality because they are recorded
from human player strategies. The remaining 36 strategies in our training set
are evolutionary scripts, i.e., previously evolved strategies that we will use as an
opponent strategy. The output of EA is a set of counter-strategies. The second
step (KT for Knowledge Transfer) involves a state-based knowledge transfer from
evolved strategies to tactics. Finally, we empirically validate the effectiveness of
the evolved tactics by testing them with dynamic scripting (DS). The evaluation
with dynamic scripting is not a necessary part of the ESTG process, because
other machine learning techniques may also be used e.g., the case-based reasoning
algorithm in (Aha et al., 2005) also used tactics evolved with ESTG.

EA: Evolving Domain Knowledge

To specify the evolutionary algorithm used in the EA step, we will discuss the
chromosome encoding, the fitness function, and the genetic operators.

Chromosome Encoding

EA works with a population of chromosomes (in our experiments we use a pop-
ulation of size 50), each of which represents a static strategy. Figure 4 shows
the chromosome’s design. The chromosome is divided into the 20 states as de-
fined earlier (see Figure 2). States include a state marker followed by the state
number and a series of genes. Each gene in the chromosome represents a game
action. Four different gene types exist, corresponding to the available actions in

Wargus, namely (1) build genes, (2) research genes, (3) economy genes, and (4)
combat genes. Each gene consists of a gene ID that indicates the gene’s type (B,
R, E, and C, respectively), followed by values for the parameters needed by the
gene. Chromosomes for the initial population are generated randomly. An partial
example chromosome is shown at the bottom of Figure 4.

Fitness Function

To determine the fitness of a chromosome, the chromosome is translated to a
game AI script and played against a script in the training set. A fitness function
measures the relative success of the game AI script represented by the chromosome.
The fitness function F for the adaptive agent a (controlled by the evolved game
script), yields a value in the range [0, 1] and is defined as follows.

F =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min

(
CT

Cmax
· Ma

Ma + Ms
, b

)
if a lost,

max

(
Ma

Ma + Ms
, b

)
if a won.

(5)

In this equation, CT represents the time step at which the game was finished (i.e.,
lost by one of the agents, or aborted because time ran out), Cmax represents the
maximum time step the game is allowed to continue to, Ma represents the military
points for the adaptive agent, Ms represents the military points for the adaptive
agent’s opponent, and b is the break-even point. The factor CT

Cmax
ensures that

a game AI script that loses after a long game is awarded a higher fitness than a
game AI script that loses after a short game.

Our goal is to generate a chromosome with a fitness exceeding a target value.
When such a chromosome is found, the evolution process ends. This is the fitness-
stop criterion. For our experiments, we set the target value to 0.7. Because
there is no guarantee that a chromosome exceeding the target value will be found,

Figure 4: Design of a chromosome to store a game AI script in Wargus.

evolution also ends after it has generated a maximum number of chromosomes.
This is the run-stop criterion. We set the maximum number of chromosomes to
250. The choices for the fitness-stop and run-stop criteria were determined during
preliminary experiments.

Genetic Operators

Relatively successful chromosomes (as determined by Equation 5) are allowed to
breed. To select parent chromosomes for breeding, we use size-3 tournament se-
lection. This method prevents early convergence and it is computationally fast.
Newly generated chromosomes replace existing chromosomes in the population,
using size-3 crowding (Goldberg, 1989).

To breed new chromosomes, we implemented four genetic operators: (1) state
crossover, which selects two parents and copies states from either parent to the
child chromosome, (2) gene replace mutation, which selects one parent, and re-
places economy, research, or combat genes with a 25% probability, (3) gene biased
mutation, which selects one parent and mutates parameters for existing economy
or combat genes with a 50% probability, and (4) randomization, which randomly
generates a new chromosome. Randomization has a 10% chance of being selected
during an evolution. The other genetic operators have a 30% chance. By design,
all four ensure that a child chromosome always represents a legal game AI.

The genetic operators take into account activated genes, which represent ac-
tions that were executed when fitness was assessed. Non-activated genes are irrel-
evant to the chromosome. If a genetic operator produces a child chromosome that
is equal to a parent chromosome for all activated genes, then this child is rejected
and a new child is generated.

KT: State-based Knowledge Transfer

ESTG automatically recognizes and extracts tactics from the evolved chromosomes
and inserts these into state-specific knowledge bases. The possible tactics during
a game mainly depend on the available units and technology, which in RTS games
typically depend on the buildings that the player possesses. Thus, we distinguish
tactics using the Wargus states displayed in Figure 2.

All genes grouped in an activated state (which includes at least one activated
gene) in the chromosomes are considered to be a single tactic. The example
chromosome in Figure 4 displays two tactics. The first tactic for state 1 includes
genes 1.1 (a combat gene that trains a defensive army) and 1.2 (a build gene that
constructs a blacksmith). This tactic will be inserted into the knowledge base for
state 1. Because gene 1.2 spawns a state change, the next genes will be part of a
tactic for state 3 (i.e., constructing a blacksmith causes a transition to state 3, as
indicated by the state marker in the example chromosome).

Experimental Evaluation

Through the EA and KT steps, ESTG generates knowledge bases. The quality of
these knowledge bases is evaluated with dynamic scripting (DS).

Crafting the Evolved Knowledge Bases

We evolved 40 chromosomes against the strategies provided in the training set.
The EA was able to find a strong counter-strategy against each strategy in the
training set. All chromosomes had a fitness score higher than 0.7 (as calculated
with Equation 5), which represents a clear victory.

In the KT step, the 40 evolved chromosomes produced 164 tactics that were
added to the evolved knowledge bases for their corresponding state. We noticed
that no tactics were found for some of the later states. All games in the evolution
process ended before the adaptive agent constructed all buildings, which explains
why these later states were not included. By design, the AI controlled by dynamic
scripting will only visit states in which tactics are available and will ignore other
states.

Performance of Dynamic Scripting

We evaluated the performance of the adaptive agent (controlled by dynamic script-
ing using the evolved knowledge bases) in Wargus by playing it against a static
agent. Each game lasted until one of the agents was defeated, or until a certain
period of time had elapsed. If the game ended due to the time restriction, the
agent with the highest score was considered to have won. After each game, the
adaptive agent’s policy was adapted. A sequence of 100 games constituted one
experiment. We ran 10 experiments each against four different strategies for the
static agent:

1-2. Small/Large Balanced Land Attack (SBLA/LBLA). These
two strategies focus on land combat, maintaining a balance between
offensive actions, defensive actions, and research. SBLA is applied on a
small map (64x64 cells) and LBLA is applied on a large map (128x128
cells).

3. Soldier’s Rush (SR): This strategy attempts to overwhelm the
opponent with cheap offensive units in an early state. Because SR
works best in fast games, we tested it on a small map.

4. Knight’s Rush (KR): This strategy attempts to quickly advance
technologically, launching large offenses as soon as powerful units are
available. Because KR works best in slower-paced games, we tested it
on a large map.

To quantify the relative performance of the adaptive agent against the static
agent, we used the randomization turning point (RTP), which is measured as

follows. After each game, a randomization test (Cohen, 1996) was performed
using the global reward values over the last ten games, with the null hypothesis
that both agents are equally strong. The adaptive agent was said to outperform
the static agent if the randomization test concluded that the null hypothesis can be
rejected with 90% probability in favor of the adaptive agent. RTP is the number
of the first game in which the adaptive agent outperforms the static agent. A low
RTP value indicates good efficiency for dynamic scripting.

Ponsen and Spronck (2004) manually improved existing knowledge bases (re-
ferred to as the semi-automatic approach) from counter-strategies that were evolved
offline, and tested dynamic scripting against SBLA, LBLA, SR, and KR. We ran
new experiments with dynamic scripting against SBLA, LBLA, SR, and KR, now
using the automatically evolved knowledge bases found with the ESTG method
(referred to as the automatic approach). The results for dynamic scripting with
the two competing approaches are shown in Figure 5.

From the figure, we conclude that the performance of dynamic scripting im-
proved with the evolved knowledge bases against all previously tested scripts,
except for KR; RTP values against these scripts have substantially decreased.
Dynamic scripting with the evolved knowledge bases outperforms both balanced
scripts before any learning occurs (e.g., before weight values are adapted). In
previous experiments against the SR, dynamic scripting was unable to find an
RTP. In contrast, dynamic scripting using the evolved knowledge bases recorded
an average RTP of 51 against SR.

We believe that dynamic scripting’s increased performance, compared to our
earlier experiments (Ponsen & Spronck, 2004), occurred for two reasons. First,
the evolved knowledge bases were not restricted to the (potentially poor) domain
knowledge provided by the designer (in earlier experiments, the knowledge bases
were manually designed and manually “improved”). Second, the automatically
generated knowledge bases include tactics that consist of multiple primitive ac-
tions, whereas the knowledge bases used in earlier experiments mostly include
tactics that consist of a single primitive action. Knowledge bases consisting of
compound tactics (i.e., an effective combination of fine-tuned actions) reduce the
search complexity in Wargus allowing dynamic scripting to achieve fast adaptation
against many static opponents.

The Issue of Generalization

The automatic approach produced the best results with dynamic scripting. How-
ever, it is possible that the resulting knowledge bases were tailored for specific
game AI strategies (i.e., the ones received as input for the ESTG method). In
particular, scripts 1 to 4 (SBLA, LBLA, SR, and KR) were both in the training
and test sets. We ran additional experiments against scripts that were not in the
training set. As part of a game programming class at Lehigh University, students
were asked to create Wargus game scripts for a tournament. To qualify for the
tournament, students needed to generate scripts that defeat scripts 1 to 4 in a
predefined map. The top four competitors in the tournament (SC1–SC4) were
used for testing against dynamic scripting. During the tournament, we learned

Figure 5: The recorded average RTP values over 10 experiments for the two com-
peting approaches. The x-axis lists the opponent strategies. The y-axis represents
the average RTP value. A low RTP value indicates good efficiency for dynamic
scripting. The three bars that reached 100 represent runs where no RTP was
found (e.g., dynamic scripting was unable to statistically outperform the specified
opponent).

that the large map was unbalanced (i.e., one starting location was superior over
the other). Therefore, we tested the student scripts on the small map. Dynamic
scripting using the evolved knowledge bases was played against the new student
scripts. The experimental parameters for dynamic scripting were unchanged. Fig-
ure 6 illustrates the results. From the figure it can be concluded that dynamic
scripting is able to generalize against strong strategies that were not in the train-
ing set. Only the champion script puts up a good fight; the others are already
defeated from the start.

Conclusions

In this paper, we proposed a methodology (implemented as ESTG) that can auto-
matically evolve knowledge bases of state-based tactics (i.e., temporally extended
actions) for dynamic scripting, a reinforcement learning method that scales to
computer game complexity. We applied it to the creation of an adaptive opponent
for Wargus, a clone of the popular Warcraft IITM game.

From our empirical results we showed that the automatically evolved knowl-
edge bases improved the performance of dynamic scripting against the four static
opponents that were used in previous experiments (Ponsen & Spronck, 2004).

Figure 6: The recorded average RTP values over 10 experiments for dynamic
scripting with the automatically evolved knowledge bases against the student
scripts. The x-axis lists the opponent strategies. The y-axis represents the av-
erage RTP value.

We also tested it against four new opponents that were manually designed. The
results demonstrated that dynamic scripting using the ESTG evolved knowledge
bases can adapt to many different static strategies, even to previously unseen ones.
We therefore conclude that ESTG evolves high-quality tactics that can be used to
generate strong adaptive AI opponents in RTS games.

Acknowledgments

The first two authors were sponsored by DARPA and managed by NRL under
grant N00173-06-1-G005. The views and conclusions contained here are those of
the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of DARPA, NRL, or the US Government. The
third author is funded by a grant from the Netherlands Organization for Scientific
Research (NWO grant No 612.066.406).

References

Aha, D., Molineaux, M., & Ponsen, M. (2005). Learning to win: Case-based
plan selection in a real-time strategy game. Proceedings of 6th International
Conference on Case-Based Reasoning (ICCBR-05) (pp. 5–20).

Cheng, D., & Thawonmas, R. (2004). Case-based plan recognition for real-time
strategy games. Proceedings of the 5th International Conference on Intelligent
Games and Simulation (GAME-ON-04) (pp. 36–40).

Cohen, P. (1996). Empirical methods for artificial intelligence. IEEE Expert:
Intelligent Systems and Their Applications, 11 (6), 88.

Demasi, P., & Cruz, A. (2002). Online coevolution for action games. Proceedings of
the 3rd International Conference on Intelligent Games and Simulation (GAME-
ON-02) (pp. 113–120).

Goldberg, D. (1989). Genetic algorithms in search, optimization & machine learn-
ing. Reading, MA: Addison-Wesley Publishing Company.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N. (2003). Generalizing plans
to new environments in relational MDPs. Proceedings of 18th International
Joint Conference on Artificial Intelligence (IJCAI-03) (pp. 1003–1010).

Kaelbling, L., Littman, M., & Moore, A. (1996). Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4 , 237–285.

Laird, J., & van Lent, M. (2000). Human-level AI’s killer application: Interactive
computer games. Proceedings of the 17th National Conference on Artificial
Intelligence and Twelfth Conference on on Innovative Applications of Artificial
Intelligence (pp. 1171–1178).

Marthi, B., Russell, S., & Latham, D. (2005). Writing Stratagus-playing agents in
concurrent ALisp. Proceedings of Workshop on Reasoning, Representation and
Learning in Computer Games (IJCAI-05).

Nareyek, A. (2004). AI in computer games. Queue, 1 (10), 58–65.

Ponsen, M., & Spronck, P. (2004). Improving adaptive game AI with evolutionary
learning. Proceedings of Computer Games: Artificial Intelligence, Design and
Education (CGAIDE-04) (pp. 389–396).

Rabin, S. (2004). AI game programming wisdom 2. Hingham, MA, USA: Charles
River Media, Inc.

Schaeffer, J. (2001). A gamut of games. AI Magazine, 22 (3), 29–46.

Spronck, P., Sprinkhuizen-Kuyper, I., & Postma, E. (2004). Online adaptation of
game opponent AI with dynamic scripting. International Journal of Intelligent
Games and Simulation, 3 (1), 45–53.

Sutton, R., & Barto, A. (1998). Reinforcement learning: an introduction. Cam-
bridge, MA, USA: MIT Press.

Summary of Bios

Marc Ponsen is a C.S. PhD candidate at the Institute of Knowledge and Agent
Technology (IKAT) of Maastricht University. Prior to joining Maastricht Univer-
sity, he worked as an Artificial Intelligence researcher at Lehigh University (USA).
His research interests include machine learning, reinforcement learning and multi-
agent systems. His current research focuses on scaling reinforcement learning
algorithms to complex environments, such as computer games. He (co-)authored
several refereed conference/workshop papers and international journal papers on
this subject.

Dr. Héctor Muñoz-Avila is an assistant professor at the Department of Com-
puter Science and Engineering at Lehigh University. Prior to joining Lehigh, Dr.
Muñoz-Avila worked as a researcher at the Naval Research Laboratory and the
University of Maryland at College Park. He received his PhD from the University
of Kaiserslautern (Germany). Dr. Muñoz-Avila has done extensive research on
case-based reasoning, planning, and machine learning having written over 10 jour-
nal papers and over 30 refereed conference/workshop papers on the subject. Two
of these papers received awards. He is also interested in advancing game AI with
AI techniques. He has been chair, program committee member and a reviewer
for various international scientific meetings. He was program co-chair of the Sixth
International Conference on Case-Based Reasoning (ICCBR-05) that was held in
Chicago, Il (USA).

Dr. Pieter Spronck is a researcher of Artificial Intelligence at the Institute of
Knowledge and Agent Technology (IKAT) of Maastricht University, The Nether-
lands. He received his PhD from Maastricht University on a thesis discussing
adaptive game AI. He (co-)authored over 40 articles on AI research in interna-
tional journals and refereed conference proceedings, about half of which are on AI
in games. His research interests include evolutionary systems, adaptive control,
computer game AI, and multi-agent systems.

David W. Aha (PhD, UC Irvine, 1990) leads the Intelligent Decision Aids
Group at the US Naval Research Laboratory. His group researches, develops, and
transitions state-of-the-art decision aiding tools. Example recent projects concern
a testbed (named TIELT) for evaluating AI learning techniques in (e.g., mili-
tary, gaming) simulators, knowledge extraction from text documents, and a web
service broker for integrating meteorological data. His research interests include
case-based reasoning (with particular emphasis on mixed-initiative, conversational
approaches), machine learning, planning, knowledge extraction from text, and in-
telligent lessons learned systems. He has organized 15 international meetings on
these topics, served on the editorial boards for three AI journals, serves regularly
on several AI conference program committees, assisted on 8 dissertation commit-
tees, and is a Councilor of the AAAI.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

